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AN EMPIRICAL ANALYSIS OF COMPETITIVE NONLINEAR PRICING⇤

GAURAB ARYAL†

ABSTRACT. In this paper I estimate a model of competitive nonlinear pricing with multidimensional

adverse selection. I model competition using a Stackelberg duopoly and solve the multidimensional

screening problem by aggregating the multidimensional type into a single dimensional type. I study

identification and estimation of the utility and cost parameters and the joint density of consumer types.

The truncated marginal densities of the aggregated types can be nonparametrically identified but not the

joint density. I use the classic Cramér-von Mises and Vuong’s test to select one parametric family of cop-

ula to estimate the joint density from the unspecified marginals. Using a unique data for advertisements

collected from two Yellow Pages Directories in Central Pennsylvania I find that: (a) Joe copula character-

izes the joint density of adverse selection; (b) there is a substantial heterogeneity among advertisers; (c)

the estimated density rationalizes why there is more competition at the lower end of the ads than at the

upper end; (d) consumers treat the ads as substitutes; and (e) a counterfactual exercise suggests that there

is a substantial (3.8% of the sales) loss of welfare due to asymmetric information.

Keywords: Competitive Nonlinear Pricing, Multidimensional Screening, Identification, Advertisement,

Copula.

JEL classification: C14, D22, D82, L11, L13.

1. INTRODUCTION

The objective of this paper is to propose a method for empirical analysis of competitive markets for

differentiated products where consumers have multidimensional private information. In particular,

I use a multidimensional screening model with competition, that builds on [Ivaldi and Martimort,

1994], to analyze a market where sellers compete by sequentially offering a nonlinear pricing. Using

a unique data on sales of advertisements and the prices charged by two sellers, I study identification

and estimation of the utility and cost functions and the joint density of the consumers’ types that

is unspecified (nonparametric). The estimates rationalize the data and is consistent with the theory,

which suggests that the method has a potential application to other markets with competition and

possibly multidimensional private information.

Date: May 12, 2013.
⇤ Previously this paper was circulated under the title “Competition and Nonlinear Pricing in Yellow Pages.” I am deeply

indebted to my friend Yao Huang for her help with an earlier version of the paper. I want to thank Herman Bierens, Vijay
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of London, UNSW and UQ. Special thanks are due to Isabelle Perrigne and Quang Vuong for their intellectual impetus and
suggestions. I am solely responsible for any error. Recent version of the paper is available at the author’s webpage: click here.
† The Australian National University.
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2 G. ARYAL

The presence of private or hidden information is now a widely accepted characteristic for most

markets and is studied under the rubric of principal-agent problem. The theory for a monopoly

seller where consumers have only one dimensional adverse selection parameter is well understood,

see [Spence, 1977; Mussa and Rosen, 1978; Maskin and Riley, 1984; Wilson, 1993; Laffont and Mar-

timort, 2001; Bolton and Dewatripont, 2005], and subsequently has been fruitfully used in empirical

analysis by [Crawford and Shum, 2006; Einav, Finkelstein, and Cullen, 2010; Perrigne and Vuong,

2011a; Einav, Jenkis, and Levin, 2012; Einav, Finkelstein, Ryan, Schrimpf, and Cullen, 2012], among

others. Most, if not all, markets are, however, served by more than one seller, so it is important to

allow for imperfect competition. But as soon as we have more than one seller, the problem becomes

difficult; the revelation principal fails [Peck, 1997; Epstein and Peters, 1999; Martimort and Stole,

2002] and solutions can be determined under assumptions that might be, often, restrictive for empir-

ical analysis; see [Oren, Smith, and Wilson, 1983; Stole, 1995; Armstrong and Vickers, 2001; Rochet

and Stole, 2003; Stole, 2007; Yang and Ye, 2008]. For example, [Yang and Ye, 2008] assume that the

vertical and horizontal types are independent and are uniformly distributed and there is exclusive

dealing, all of which are untenable with the data used in this paper (c.f. Figures 1 & 2).1 With these

models, the most difficult part is to model the optimal nonlinear pricing as a function of both mul-

tidimensional adverse selection and competition, but if one only cares about the demand side, one

can use the random utility framework. [Leslie, 2004; McManus, 2006; Cohen, 2008] follow this ap-

proach, but they can identify the model only under strong non testable (parametric) distributional

assumptions. Moreover, ignoring the supply side limits the scope of such models when it comes to

quantifying the effect of adverse selection and/or merger on welfare and product line design.2 Fi-

nally, with multiple sellers it becomes imperative, like in this paper, to allow for multidimensional

taste parameters, and as [Armstrong, 1996; Rochet and Choné, 1998; Ekeland and Moreno-Bromberg,

2010] have articulated this is a difficult problem even for a single seller. The seminal paper by [Ivaldi

and Martimort, 1994], is the closest to this paper, where they consider a duopoly competition, but

under a parametric assumption on joint density of consumers’ type.

In view of the data, I use Stackelberg-duopoly model and index consumer’s type by a two-

dimensional parameter without specifying the joint density. Under the assumption that the utility

function is quadratic and concave and the cost functions are linear, a new random variable, one

for each seller, can be (endogenously) determined that aggregates the two-dimensional types into

one and transforms the multidimensional adverse selection problem into a single-dimensional. The

1 The data rejects the null of independence and as seen in the figures there non-exclusivity because some consumers buy
both the sellers.

2 See [Borenstein, 1991; Lott and Roberts, 1991; Shepard, 1991; Borenstein and Rose, 1994; Clerides, 2002; Verboven, 2002;
Busse and Rysman, 2005] for reduced form analysis.
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aggregators act as a “sufficient statistic” for the sellers and can be used, in the place of the two di-

mensional type to determine the equilibrium pairs of price and an allocation functions. Incentive

compatibility implies that the allocation rules are monotonic, which can then be inverted to write

the unobserved aggregated types as a function of observed demand and hence they become the key

source of identification. If the utility of the lowest type from consuming outside options is normal-

ized, the utility and cost parameters can be identified, but since some consumers do not participate

while not all who participate buy from both the sellers, only truncated marginal densities of aggre-

gated types can be nonparametrically identified. Then I use a copula to estimate the joint density

from the two unspecified marginals, but in order to determine the family of copula I use Cramér-von

Mises test and the non nested model selection test of [Vuong, 1989] and select the family that pro-

vides the best fit among seven of the most widely used families. Since the asymptotic distribution of

these tests are nonstandard, I use the multiplier Bootstrap procedures proposed by [Kojadinovic and

Yan, 2011]. The utility and cost parameters are estimated from structural equations and the densities

are estimated using Kernel density based on diffusion process, see [Botev, Grotowski, and Kroese,

2010], which have better performance at the boundaries than the others.

I apply the estimation procedure to a unique data on advertisements in two Yellow Pages Direc-

tories for the Center County, Pennsylvania, US. The data contains information about the menus of

advertisement options and prices offered by two publishers Verizon and Ogden and the advertise-

ments chosen by local business-units in the county.3 A working assumption of this paper is that

advertisement is a final product for businesses. The estimation results suggest that : (a) Joe copula

provides the best fit for the joint density; (b) there is a substantial heterogeneity in how the two ads

are valued; (c) competition is severe at the lower end of the market, which also has more mass, than

the upper end of the market; (d) consumers treat the two ads as substitutes; and (e) counterfactual

exercise shows that there is a loss of welfare, approximately 3.8% of sales revenue, due to asymmetric

information.

This paper is also related to the literature on demand estimation, in particular the discrete choice

models to study demand for differentiated products, pioneered by [Berry, 1994; Berry, Levinsohn,

and Pakes, 1995]. But for identification they rely on linearity of the utility function, strong paramet-

ric assumption about the distribution of (one dimensional) consumer heterogeneity and exogenous

demand shifters. Micro level data are imperative for identification in this paper while they only

need aggregate level data. Another difference is that in their framework the consumer heterogene-

ity is only unknown to the econometricians, which means they have to take the product varieties

as exogenous, while I model both the product varieties/qualities and pricing rules as endogenous

3 Throughout the paper I use the terms business-units, firms and consumers to mean the same. The level of advertisements
bought by each business units were manually recorded by reading the two directories. See the section 2 for more.
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functions of unobserved consumers’ type. This framework is especially useful to simulate mergers

with endogenous product varieties with ease; see footnote 12 of [Berry, Levinsohn, and Pakes, 1995].

The paper is also similar to papers that study identification of principal-agent models by [Aryal, Per-

rigne, and Vuong, 2010; Perrigne and Vuong, 2011b], and the hedonic models by [Ekeland, Heckman,

and Nesheim, 2002, 2004; Heckman, Matzkin, and Nesheim, 2010]; both these strands of literature

use demand and supply side for identification.4

The paper is organized as follows: Section 2 describes the data, the model is presented in Section 3

while identification and estimation is studied in Section 4. Estimation results are collected in Section

4.3 and Section 5 concludes. All the omitted proofs are collected in the appendix.

2. NONLINEAR PRICING IN YELLOW PAGES

The data contains information about advertisements in Yellow Pages directories sold by two pub-

lishers, Verizon ( henceforth, VZ) and Ogden Directories Inc. ( henceforth, OG) in Central Pennsyl-

vania (State College and Bellefonte), US for the year 2006. The data contains information about the

advertisement options (different sizes and color combinations) offered by the two publishers and the

ads bought by each of the business-units in the market. A business-unit is someone with a phone reg-

istered as “for-business”. The price data was provided by The Yellow Page Association, an umbrella

organization of Yellow Pages publishers and the choice of advertisements were manually read-off

from the two directories. It is a norm in the market to put names and addresses of each business-unit

in the directory, which ensures that the list is exhaustive. Then, each business-unit was matched with

the ads placed in the two directories.

VZ entered the market earlier and is a dominant player who also provides utility services. OG,

on the other hand, does not provide any utility service. VZ’s directory is slightly bigger, with three

columns per page, thicker and the quality of the paper is better than that of OG, whose directory

has only two columns per page. VZ distributes more than 215,400 copies while Ogden distributes

only 73,000, but they cover the same market. Although these informations are not used in model or

estimation, they do suggest to be the source of product differentiation.

Both publishers offer different advertisement options that can be classified into three general cat-

egories: (i) listing; (ii) space listing; and (iii) display. VZ and OG both offer variations within each

category. For example, VZ offers three fonts sizes with listing, which is the most basic option where

the name, address and phone number(s) are listed, and OG offers only two font sizes, but the listing

4 [D’Haultfoeuille and Février, 2010] provide an important insight by showing that modeling supply side is not necessary
if there is some (meaningful) exogenous variation in contracts. Although they consider single dimensional type, such variation
can be useful for nonparametric identification of multidimensional adverse selection, a subject that is explored in [Aryal,
2013a].
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Size (No Color) $ per Pica (Verizon) $ per Pica (Ogden)
2.5% of page 10.84 10.65
10% of page 8.65 5.54
25% of page 7.98 3.93

Half Page 6.79 3.71
Full Page 6.12 3.42

TABLE 1. Quantity Discounts: Price per Pica for different sizes.

with smallest font (known as the standard listing) is free with both.5 Listing accounts for 30% (resp.

53%) of the total ad sales in VZ (resp. OG). Space listing refers to an option where a space is allocated

within the column under an appropriate business heading (such as Doctors, Salons, etcetera), and

both VZ and OG offer five different variations and it accounts for 30% (resp. 26%) of the total ad

sales in VZ (resp. OG). Finally, display refers to an option where a space (that could cover up to

two pages) with colorful pictures is allocated under for the buyer. VZ offers nine different variations

and OG offers seven different variations within this category, which is also the most expensive of

the three options. One can also choose different colors and sizes. VZ offers five color options – no

color, one color, white background, white background plus one color and multiple colors including

photos and OG offers four – no color, one color, white background plus one color and multiple colors

including photos; see Table A-1.

The unit of measurement is picas, which is approximately 1/6 of an inch. For example, a standard

listing in VZ is equal to 12 picas and in OG is equal to 9 picas, and a full page ad in VZ is equal to

3, 020 picas and in OG is equal to 1, 845 picas. From the table Table A-1 one can see that: (i) for any

size, color accounts for most of the differences in prices, e.g. a full-page display ad with no color costs

$18, 510 in VZ (resp. $6, 324 in OG), which increase to $32, 395 (resp. $9, 435) with multiple colors; (ii)

VZ’s price is significantly higher than that of Ogden’s across all the comparable advertising options,

e.g., a half-page no color display costs $10, 093 in VZ while it costs only $3, 372 in OG; (iii) the price

differences between VZ and OG is smaller for the lower-end options, such as listing, than for the

upper-end options, e.g., VZ’s average price is 130% higher than OG’s for the display option and this

difference decreases drastically to 18% for space listing and to 17% for standard listing (no color);

and (iv) for a given color category, both offer quantity-discount: the price per square pica decreases

with the ad size, e.g., the unit price per square picas for a double-page, a full-page, and a half-page

display advertisements with no color are $5.68 (resp. $3.43) $6.13 (resp. $3.68) and $6.90 (resp. $3.72),

respectively for VZ (resp. OG); see Table 1.

Similarly, from Table A-2 one can see that: (i) the display option, which is the most expensive

option, accounts for more than 70% of the revenue for both VZ and OG; (ii) roughly 66% of the

5 To reiterate what was said earlier, standard listing provides an exhaustive list of consumers in the market and are
modeled as It is because of this feature that the data contains exhaustive list of all business-units in the market.
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FIGURE 1. X-axis: Ogden ads; Y-axis: Verizon ads.

business-units choose listing and 14% choose display option in VZ, while the numbers for OG are

94% and 3.8%, respectively; (iii) 54% choose only Verizon, 12% choose both and only 2% choose

only from Ogden and the rest choose the (default) standard listing. The average prices paid in each

directory by the firms purchasing from both directories are higher than those who purchase from

only one directory, which may indicate a higher evaluation of advertising among this group. A

similar pattern is observed with respect to advertisement sizes.

In the theoretical model I allow consumers to have two-dimensional types. The reason why one

dimensional private information is not sufficient and I need at least two-dimensional types lies in

the demand pattern as seen in Figure 1. If consumers had only one dimensional type then within

the quasi-linear environment, both VZ and OG would rank consumers identically so that a scatter

plot of demand for VZ and OG ads would coalesce around an increasing straight line. Since this

is inconsistent with the data, where the over all correlation between two ads is quite low at 0.25

increasing up to only 0.32 for the subset who buys from both. However, I reject the hypothesis that

the two ads are independent: the Cramer-von Misses statistic for independence was 1.66 with p ⇡ 0.

The (normalized) rank plot (or the probability of a sale) of VZ and OG ads is presented in Figure 2.

Quality-Adjusted Quantity. One difficulty with the data is that the offered size and colors are dis-

crete while the theoretical model treats either quantity or quality as continuous variable, even though

there are many such combinations. In view of this, I propose a way to combine the size and color

into a continuous one dimensional variable and is referred to as the ’quality-adjusted-quantity’. But

to verify that such a transformation preserves the ranking from the perspective of the consumers,

I use the following features. First, note that if both size and color were important then the sellers
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FIGURE 2. Rank plot of advertisement bought from Verizon and Ogden.

should discriminate across both the dimensions, but once I control for the size (picas) the relative

price is constant across colors. In particular, discounts are offered for large advertisements while no

such discounts are observed for multi color ads and the ratio of the (marginal) prices for two dif-

ferent colors are constant across different sizes. Second, according to [Maskin and Riley, 1984], an

optimal bundle of quantity and quality should lie on a unique curve in the quantity-quality space

and the optimal quantity allocation should increase with quality along this curve, something that is

not observed in the data.

Now, consider the price schedule for multi colored options and fit a continuous function that

represents the price schedule. Then I can project each size into this multi-color price to get a new

quantity (in picas) in terms of the multi-color size. Then I fit the following quadratic functions using

OLS:

\T1(qj1) = g1 + a1qj1 �
b1
2

q2
j1,

\T1(qj1) = g2 + a2qj2 �
b2
2

q2
j2, (1)
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Min 1st Quartile Median Mean Max
Verizon 92.27 92.27 114.50 171.82 6485.60
Ogden 209.5 209.5 209.5 230.3 2147.4

TABLE 2. Summary of Quality Adjusted quantity

where Tji is the price in dollars for publisher i, and qji is the advertisement size for multi-colored

choices measured in square picas purchased by consumer j. The estimates are {ĝ1, â1, b̂1/2} =

{1512, 11.27,�0.00027} and {ĝ2, â2, b̂2/2} = {103, 6.25,�0.00066}, with R2 = 0.99 and all estimates

are significant at 1%. Then the quality-adjusted quantities are constructed by plugging other (non

multi-colored choices) onto these regression functions. For example, one-page with no color ad in

Verizon, which is is 3, 020 sq. picas, is equal to 1, 470 sq. picas in multi color. The summary of the

quality-adjusted quantities are given in Table (2). Similar argument is also used by [Perrigne and

Vuong, 2011a].

3. THE MODEL

Let the leader (VZ) be indexed as P1, who moves first, and let the follower (OG) be indexed as P2,

who moves after observing P10s choices. Let u(q, q, A) be the gross utility that a consumer of type

theta := (q1, q2) gets from choosing q := (q1, q2), and let A be the set of utility parameters that are

common for all consumers. Then if a (q1, q2)�type consumer chooses (q1, q2), then let the net utility

be

U(q1, q2, q1, q2) := u(q, q, A)�
2

Â
i=1

Ti(qi) :=
2

Â
i=1

 

qiqi �
biq2

i
2

!

+ cq1q2 �
2

Â
i=1

Ti(qi), (2)

where Ti(·) : R+ ! R+ is the pricing function chosen by Pi. So A := {b1, b2, c} and let bi > 0, i = 1, 2

and let b1b2 � c2 > 0 (for concavity).6 Then, q1 and q2 are substitutes, neutral or complements

depending on if c is negative, zero or positive, respectively. To wit, note that the (net) marginal

utility of q1 is MU1 = q1 � bq1 + cq2 � T0(q1), which increases in q2 (complementarity) if and only

if c > 0. But if c > 0 then q1 and q2 should be positively-assortive given the concavity of the gross

utility function. However, that is incompatible with the data, see Figures 1 & 2, so I restrict c  0.

The type (q1, q2) are independently and identically distributed as F(·, ·). The sellers, know their and

their opponent’s cost and F(·, ·) but not the realizations. I make the following assumptions

Assumption 1. (1) The utility function is concave, i.e. b1b2 � c2 > 0 and c  0.

(2) (q1, q2)
i.i.d⇠ F(·, ·) with density f (·, ·) > 0 on the support [q1, q̄1]⇥ [q2, q̄2].

6 Quadratic utility is general enough to capture the essential features of the data but at the same time it is simple enough
to keep the model tractable; [Ekeland, Heckman, and Nesheim, 2002, 2004] also use similar utility. Nonetheless it is more
general than u(q) = q.q, which is widely used in the mechanism design literature.
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(3) The cost function is assumed to be Ci(qi) = Ki + miqi with Ki � 0 and mi > 0 for i = 1, 2.

All assumptions are self explanatory except the last, which is partly motivated by the observation

in printing industry where two main components of cost include the cost of printing machine and

fixed marginal cost of ink, paper and labor and partly by the consideration for identification. A

general cost function will complicate the model without any guarantee of better inference because

such a function cannot be identified, see [Perrigne and Vuong, 2011a] for non identification with a

monopoly seller and single dimensional type.

The timing of the game is as follows: P1 chooses {q1(·), T1(·)} and then P2 chooses {q2(·), T2(·)}

after observing P10s choices. Then each consumer chooses (q1, q2) and pays accordingly. As men-

tioned earlier, pricing functions are roughly quadratic (1), so I restrict T1(·) to be

T1(q1) =

8

<

:

g1 + a1q1 +
b1
2 q2

1 if q1 > q10

0 if q1  q10.
(3)

which is characterized by parameters{g1, a1, b1 : g1 > 0, a1 > 0, b1 < 0}. But to find the solution,

T2(·) doesn’t have to be restricted to be quadratic, as long as T1(·) is.7 In order to determine the

participation (IR) and truth-telling/incentive compatibility constraint (IR), I will use the consumer’s

first order conditions

(q1 � b1q1 + cq2 � T0
1(q1))(q1 � q10) = 0;

(q2 � b2q2 + cq1 � T0
2(q1))(q2 � q20) = 0. (4)

to determine four types of consumers: those who do not participate and choose (q10, q20) denoted

as C0, those who choose only from either P1 or P2 and are denoted, respectively as C1 and C2 and

those who buy both q1 > q10 and q2 > q20, denoted as Cb; all in Figure 3. These four subsets are

determined endogenously given T1(·) and T2(·).

Consider the set C0, where the types do not participate. Then for all (q1, q2) the net marginal

utilities MUi(·, ·; q1, q2)  0 when evaluated at the pair (q10, q20) for i = 1, 2. MUi(q10, q20; q)  0 for

i = 1, 2, q 2 C0. From (3), these two conditions can be simplified to

q1 � b1q10 + cq20  a1 + b1q10

q2 � b2q20 + cq10  T0
2(q20),

7 In fact, in the supplementary note [Aryal, 2013b] I derive a condition that is necessary and sufficient for the optimal
T2(·) to be quadratic, which can provide some testable restrictions on the data.
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FIGURE 3. Partition of Consumer types.

without restricting T2(·) to be quadratic.8 Let (q⇤1 , q

⇤
2 ) the marginal type who choose (q10, q20), i.e.

q

⇤
1 = a1 + (b1 + b1)q10 � cq20 (5)

q

⇤
2 = T0

2(q20) + b2q20 � cq10. (6)

So all consumers with type (q1, q2) ⌧ (q⇤1 , q

⇤
2 ) find it optimal to choose (q10, q20). Now, consider C1

where consumers choose q1 > q10 but q2 = q20. The types must satisfy the following conditions:

q1 � b1q1 + cq20 = a1 + b1q1

q2 � b2q20 + cq10  T0
2(q20),

From the first equality I get q1 = q1�a1+cq20
b1+b1

, which together with the second inequality determine

the threshold type q

⇤⇤
2 such that all q2  q

⇤⇤
2 consumer choose q20. Since the marginal utility from q2

depends on the choice of q1, this threshold type is a function of q1 and is

q

⇤⇤
2 =

✓

b2 �
c2

b1 + b1

◆

q20 + T0
2(q20) +

ca1
b1 + b1

� c
b1 + b1

q1. (7)

Similarly, C2 is the counterpart of C1 and is determined in the same way. Let, q

⇤⇤
1 be the threshold

type such that all type with q1  q

⇤⇤
1 demand q10 and is

q

⇤⇤
1 =

✓

b1 + b1 �
c2

b2

◆

q10 + a1 +
c
b2

T0
2(q2)�

c
b2

q2. (8)

8 I assume that Ti(·) is right differentiable at qi0 for i = 1, 2.
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And finally, Cb is determined by the two first-order conditions as in Equation (4) that can be simpli-

fied as

q1 � b1q1 + cq2 = a1 + b1q1, (9)

q2 � b2q2 + cq1 = T0
2(q2), (10)

3.1. The Follower’s Problem. In this subsection I solve for optimal nonlinear pricing (best reply)

for the follower P2 after observing T1(·) given in (3).9 For those consumers who buy q2 > q20, the

corresponding q1 can be determined from (9) as

q1 =

8

<

:

q1�a1+cq2
b1+b1

, q1 > q

⇤

q10, q1  q

⇤
1

(11)

Substituting (11) in (10) gives the necessary condition for q2 to be optimal for type (q1, q2) consumer,

i.e.

q2 +
cq1

b1 + b1
=

ca1
b1 + b1

+

✓

b2 �
c2

b1 + b1

◆

q2 + T0
2(q2). (12)

Notice that the unobserved types appear only in the LHS of (12) and given T1(·) they can be treated

as exogenous from the point of view of P2. This suggests that the LHS can be treated as an aggregated

one-dimensional type. Let z2 = q2 +
cq1

b1+b1
be such a new type, then a type (q1, q2) consumer who is

also now a type z2 choses an optimal q2 that solves

z2 =
ca1

b1 + b1
+

✓

b2 �
c2

b1 + b1

◆

q2 + T0
2(q2). (13)

For P2, z2 is unobserved and is exogenously determined, and hence can be treated as the (unob-

served) preference of a firm for q2. It aggregates (q1, q2) in the sense that it captures the taste for q2: it

is increasing in q2 and decreasing in q1 (those who value q1 more like q2 less) and decreases with b1

( cheaper q1 implies less demand for q2, ceteris paribus). Therefore, z2 aggregates (q1, q2) and acts as

sufficient statistic in the sense that a mechanism that depends on z2 will do as good as a mechanism

that depends on (q1, q2). This also means that there will be pooling at equilibrium, i.e. two different

types with same z2 will be allocated the same good, but pooling is inevitable because the seller has

only one dimensional instrument q2 2 R, while consumers have two dimensional types. The only

important question is how should the types q1 and q2 be pooled, and argument above shows that z2

is one such way.

9 In the supplement [Aryal, 2013b], I solve P20 problem without using this aggregation method and show that solution
does not change. The advantage of using this aggregation method is its simplicity and it is keeps the identification arguments
clean and simple.
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Let G2(·) be the distribution of z2 2 [z2, z2] and g2(·) its density, then

z2 ⇠ g2(z2) :=
Z

q2

q̄2
f
✓

q1, z2 �
cq1

b2 + b2

◆

dq1.

Now, P20s optimization problem can be written in terms of z2 as

max
T2(·),q2(·),z0

2

(

EP2 =
Z z2

z0
2

⇣

T2 (q2(z2))� m2q2(z2)
⌘

g2(z2)dz2 � K2 � m2q20G2(z0
2)

)

, (14)

subject to the appropriate IC and IR constraints (see below). The threshold type z0
2 that corresponds

to the types who choose the outside option q20, i.e. the area C1 and C0 types in Figure 3 is defined as

z0
2 =

8

<

:

q

⇤
2 +

cq

⇤
1

b1+b1
, q1  q

⇤
1

q

⇤⇤
2 + cq1

b1+b1
, q1 � q

⇤
1 .

To determine the IC constraint note that a z02s choice of q2 depends on her choice of q1, see (9) & (10),

which in turn depends on q2, and so on, a difficult task in general. However, the structure of our

problem can be used to simplify the solution. In particular, I can write z02s net utility from (q1, q2)

(denoted by W2(q1, z2)) as a sum of the net utility that z2 gets from (q1, q20) ( denoted by w2(q1, z2))

and any additional utility from choosing q2 > q20 ( denoted by s2(q2, z2)), such that s2(q20, z2) = 0.

To wit, note that using the definitions

w2(q1, z2) := max
q1�q10



u
✓

q1, q20; q1, z2 �
cq1

b1 + b1

◆

� T1(q1)

�

;

s2(q2, z2) := max
q2�q20

⇢✓

z2 �
ca1 � c2q2

b1 + b1

◆

(q2 � q20)�
b2
2
(q2

2 � q2
20)� T2(q2)

�

,

the net utility can be written as

W2(q1, z2) := max
q1�q10,q2�q20



u
✓

q1, q2; q1, z2 �
cq1

b1 + b1

◆

� T1(q1)� T2(q2)

�

= w2(q1, z2) + s2(q2, z2).

Then the IC constraint becomes s2(q2(z2); z2) � s2(q2(z̃2); z2) for all z2, z̃2 2 [z2, z2]. Moreover, s2(·)

is continuous, convex and satisfies the envelope condition

s02(z2) = q2(z2)� q20 8z2 2 (z0
2, z̄2], (15)

and

T(z2) =

✓

z2 �
ca1 � c2q2

b1 + b1

◆

(q2 � q20)�
b2
2
(q2

2 � q2
20)� s2(z2). (16)
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From (15) and (16), P20s can be viewed as choosing s2(z2), the rent function, á la [Mirrlees, 1971]. In

a seminal paper Rochet [1987] showed:

Lemma 1. The global IC constraint is satisfied if, and only if, (a) (Envelope Condition): s2(z2) =
R z2

z0
2
(q2(t)�

q20)dt + s+, 8z2 2 [z0
2, z2], where s+2 ⌘ limz2#z0

2
s2(z2); and (b) s2(·) is convex or equivalently q2(z2) is

increasing in z2.

From (15) it follows that the global IC is satisfied if and only if q2(·) is strictly increasing in z2. The

participation (IR) constraint becomes W2(q1, z2) = w2(q1, z2) + s2(z2) � max{w2(q1, z2), 0},, which

is equivalent to s2(z2) � 0.10 Then, P20s optimization becomes

max
q2(·),z0

2,s+2
EP2 =

Z z2

z0
2

(

✓

z2 �
ca1 � c2q2(z2)

b1 + b1

◆

(q2(z2)� q20)�
b2
2
(q2

2(z2)� q2
20)� m2q2(z2)

�s+2 � (q2(z2)� q20)
1 � G2(z2)

g2(z2)

)

g2(z2)dz2 � K2 � m2q20G2(z0
2),

subject to the q02(z2) > 0 (IC) and s2(z2) � 0 (IR) for all z2 2 [z2, z2]. To solve the above problem,

I consider the relaxed problem where the constraints are verified ex-post. Since s2(·) is increasing

and the optimal allocation rule must be increasing in z2, ensuring s2(z0
2) = 0 is sufficient for (IR)

constraint to be satisfied for all z2 2 (z0
2, z2]. It is immediate to see that s+2 = 0 is optimal. Then the

existence and uniqueness of the solution can be guaranteed:

Theorem 1. Under our maintained assumptions on preferences and cost and the full support assumption of

g2(·) there exists a unique solution to the problem (14).

The proof is based on the result by Rochet and Choné [1998] is given in the supplementary material

[Aryal, 2013b]. The solution to this problem is formalized below:

Proposition 1. Let, (1 � G2(·))/g2(·) be decreasing, and b2 > 2c2

b1+b1
. Then,

(1) The optimal allocation function is

q2(z2) =
z2 � 1�G2(z2)

g2(z2)
� m2 � c2q20+ca1

b1+b1

b2 � 2c2

b1+b1

, 8z2 2 (z0
2, z̄2] (17)

10 An advantage of using dual approach is that it not only makes finding optimal allocation rule easier (using Euler-
Lagrange equation) but because implementability requires that the choice be convex, which then guarantees that the quantity
allocation rule is continuous in the agent’s type - a corollary of Envelope theorem. This monotonicity features prominently in
identification.
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such that q2(z2) = q20 otherwise, and z0
2 solves

z0
2 �

1 � G2(z0
2)

g2(z0
2)

= (b2 �
c2

b1 + b1
)q20 + m2 +

ca1
b1 + b1

.

(2) T2(q) must satisfy (16) such that the corresponding for the price schedule (Ramsey rule) is

T0
2(q2(z2))� m2

T0
2(q2(z2))

=
1 � G2(z2)

g2(z2)
1

∂s2(q2(z2))
∂q2

. (18)

Proof. The proof is standard in the literature, for instance see [Stole, 2007]. Only the main steps are

highlighted here. The first step determines that the expected profit function is concave in q2 and

super modular in (q2, z2). Let I be the integrand of the expected profit function, then

∂I
∂q2

=

✓✓

z2 �
ca1 � c2q2

b1 + b1

◆

+
c2

b1 + b1
(q2 � q20)� b2q2 �

1 � G(z2)
g(z2)

� m2

◆

g(z2),

∂

2 I
∂q2

2
= �(b2 �

2c2

b1 + b1
)g2(z2),

∂

2 I
∂q2∂z2

=

✓✓

1 � ∂

∂z2

1 � G(z2)
g(z2)

◆

�
✓

b2 �
2c2

b1 + b1

◆

q02(·)
◆

g(z2) = 0.

Since g2(·) > 0 and b2 > 2c2

b1+b1
, concavity follows from the second equation. The last equation

implies super modularity, i.e. ∂

2 I
∂q2∂z2

� 0. Optimal allocation q2 can be determined by simple point

wise maximization of I:

c2

b1 + b1
(q2 � q20) + (z2 �

ca1 � c2q2
b1 + b1

)� b2q2 �
1 � G2(z2)

g2(z2)
� m2 = 0

) q2(z2) :=
z2 � m2 � c2q20+ca1

b1+b1
� 1�G2(z2)

g2(z2)

b2 � 2c2

b1+b1

.

The optimal z0
2 is determined by the Euler’s method of differentiating the expected profit with

respect to z0
2:

�
 

z0
2 �

1 � G(z0
2)

g(z0
2)

� m2 �
ca1 � c2q2(z0

2)

b1 + b1

!

(q(z0
2)� q20) +

b2
2
(q2

2(z
0
2)� q2

20) = 0.

And since q2(z0
2) = q20, and as desired it is immediate to see that z0

2 solves

z0
2 �

1 � G2(z0
2)

g2(z0
2)

= (b2 �
c2

b1 + b1
)q20 + m2 +

ca1
b1 + b1

.

Since T0
2(q2) = z2 � ca1

b1+b1
� (b2 � 2c2

b1+b1
)q2 +

c2

b+1+b1
q20, which follows from differentiating (16), the

Ramsey equation (18), follows immediately. ⇤
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The equation (18) connects the quantity discount to the distribution of the demand (i.e. z2). For

instance, the markup is smaller if either the distribution of z2 is skewed towards the lower end, i.e.

(1 � G(z2)) is smaller or if ∂s2(q2(z2))
∂q2

is higher.

3.2. The leader’s problem. In this subsection I characterize the (optimal) nonlinear pricing for P1

given the continuation strategy (best response path) of P2. The fact that P10s choices are restricted to

be on the best response path complicates the pricing function, while the equilibrium allocation rule

q1(·) can be determined as a point-wise maximal. This suggests that competition affects the equilib-

rium allocation only through the price schedule. Such a phenomenon is documented by Borenstein

and Rose [1994]; Busse and Rysman [2005], who find that competition leads to either higher price

dispersion or higher discount, without substantial changes in product varieties. Even though T1(·)

is quadratic, determining the functional form of (g1, b1, a1) is complicated because P20s choices are a

function of these parameters and hence z1 is not exogenous for P1. To that end I follow Wilson [1993]

to give conditions that determine T1(·).

Recall that firms with type q1 � q

⇤⇤
1 choose q1 > q10 and while those with q1  q

⇤⇤
1 choose q10.

Using (11) and T2(·), the allocation rule q2 is a function of q1:

q2(q1; q1, q2) =

8

<

:

q2�a2+cq1
b2+b2

, q2 > q

⇤⇤
2

q20, q2  q

⇤⇤
2

(19)

Following the same arguments as with P2, let z1 = q1 +
cq2

b2+b2
be the new aggregator such that the

optimal q1 solves

z1 = b1q1 + c


a2 � cq1
b2 + b2

�

q1 + a1 + b1q1. (20)

and the threshold type

z0
1 =

8

<

:

q

⇤
1 +

cq

⇤
2

b2+b2
q2  q

⇤
2

q

⇤⇤
1 + cq2

b2+b2
q2 � q

⇤
2

such that any type z1  z0
1 buys q10. Similarly, let W1(z1, q2), w1(·, ·) and s1(q1, z1) be P10s counterpart

such that W1(z1, q2) = w2(z1, q2) + s1(q1, z1), where

s1(q1, z1) := max
{q1�q10}

✓

z1 +
c2q1 � ca2

b2 + b2

◆

(q1 � q10)�
b1
2
(q2

1 � q2
10)� g1 � a1q1 �

b1
2

q2
1.

The function s1(q1(z1), z1) ⌘ s1(z1) is the relevant rent function for P1 from which I get

T1(q1) =

✓

z1 +
c2q1 � ca2

b2 + b2

◆

(q1 � q10)�
b1
2
(q2

1 � q2
10)�

Z z1

z0
1

(q1(t)� q10)dt � s+1 . (21)
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that allows us to re-write P10s problem as

max
q1(·),z0

1,s+1
EP1 =

Z z1

z0
1

"

0

@z1 +
c2q1 � c

⇣

z2 + l2m2 +
ca1(l2�1)

b1+b1

⌘

b2l2 � c2(l2�1)
b1+b1

1

A (q1 � q10)

� b1
2
(q2

1 � q2
10)� (q1 � q10)G̃1(z1)� K1 � m1q1

#

g1(z1)dz1 � m1G1(z0
1)q10,

subject to q01(·) > 0(IC) and s1(·) � 0 (IR) constraints for all z1 2 [z0
1, z1].

Proposition 2. The optimal quantity allocation rule (contract) is given by

q1(z1) =

8

>

>

<

>

>

:

z1�G̃1(z1)�m1�
ca2+c2q10

b2+b2

b1� 2c2
b2+b2

, 8z1 2 (z0
1, z1]

q10, 8z1 2 [z1, z0
1]

(22)

and the optimal price schedule satisfies

T0
1(q1) = z1 �

ca2 + c2q10
b2 + b2

+

✓

2c2

b2 + b2
� b2

◆

q1

The proof is straightforward and is omitted. The optimal quantity is determined for a particular

price schedule. Note that in the optimization of P1 the boundaries, of the integration in profit func-

tion, are also a function of the price schedule. Following Wilson [1993], note that if the pricing rule

T1(q1) is well behaved then the quantity allocation z1 ! q1(z1) is unique and regular (sufficiently

many times differentiable): q1 = q1(z1) , ∂T1(q1)
∂q1

= Y(q1, z1). Then making the change of variable

in the profit function gives

EP1 =
Z q1

q10
(T1(q1)� m1q1)g1(T0

1(q1))T00
1 (q1)dq1 � m1G1(z0

1)q10 � K1,

where G1(z0
1) = Pr(selling q10). The optimal price is then determined by choosing a1 and b1. P10s

optimal behavior is characterized by choosing q1(·) such that q1(z1) = arg maxq1 s1(q1; z1). The first

order condition with respect to q1 is ds1(·;z1)
dz1

= 0. which gives z1 = Y(q1) where

Y(q1) =

✓

2c2

b2 + b2
� (b1 + b1)

◆

q1 �
ca2 + c2q10

b2 + b2
� T0

1(q1).



COMPETITIVE NLP 17

Hence dz1
dq1

= Y0(q1)dq1 =
n⇣

2c2

b2+b2
� b1)

⌘

� T00
1 (q1)

o

. Then the expected profit can be rewritten by

(using the fact that q1(·) is increasing ) as

EP1 =
Z q1

q10
(T1(q1)� C1(q1)) g1(Y(t))Y0(t)dt � m1G1(z0

1)q10 � K1

=
Z q1

q10
(T1(t)� C1(t)) G0

1(Y(t))dt � m1G1(z0
1)q10 � K1.

Then integrating by parts, the first term in the right hand side becomes
R q1

q10
(T0

1(t)�m1)(1�G1(Y(t)))dt�

m1q10 � K1.

Now the objective is to choose a1 and b1 that maximize the expected profit. The optimal quantity

allocation rule determined above will be used to determine the the pricing parameters {a1, b1, g1}.

P1 chooses a1 and b1 to maximized the expected profit (EP1) while gi will be such that the lowest

type of firm’s participation constraint is binding. Any extra utility resulting from interaction between

the two advertisements is extracted by the principal. Since the equations that characterize these

parameters are not explicitly used in empirical analysis, their derivation are not presented here but

only the supplement [Aryal, 2013b].

4. IDENTIFICATION AND ESTIMATION

4.1. Identification. In this section I study the identification problem of the model, which concerns

the possibility of drawing inferences from the observed data on advertisement-prices to the theoret-

ical structure outlined above. Failure to identify the model structure implies that the data lacks suf-

ficient information to distinguish between alternative structures. The model primitives are the joint

distribution of types F(·, ·) and the set of utility and cost parameters X = [m1, m2, K1, K2, b1, b2, c].

The data provides information on the price functions {ai, bi, gi : i = 1, 2} and the ads bought by

J business-units {q1j, q2j}J
j=1. A structure is a set of hypothesis that implies a unique distribution

consistent with the data. Two structures {F(·, ·), X} 6= {F̃(·, ·), X̃} are said to be observationally

equivalent if they imply the same probability distribution of the observed data. And the model is

said to be identified if there are no two observationally equivalent models. Given our environment,

I assume that the joint distribution F(·, ·) is defined on Q := [q1, q1] ⇥ [q2, q2] such that, all F 2 F

is absolutely continuous with continuously differentiable and nowhere vanishing density f (·, ·) and

X is such that (i) b1b2 � c2 > 0; (ii) bi + bi > 0 for i = 1, 2; and (iii) (b1 + b1)(b2 + b2)� 2c2 > 0.11

Since the optimal nonlinear pricing functions are defined in terms of (z1, z2), I consider the joint dis-

tribution G(·, ·) as the model structure and study its identification. This is without loss of generality

11These inequalities are sufficient conditions for the utility function to be concave, and the firms’ optimization problem to
be convex.
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because of the one-to-one mapping between the pair (q1, q2) and (z1, z2). Recall that the joint distri-

bution G(·, ·) is defined on a compact support [z1, z1]⇥ [z2, z2] and with joint density g(·, ·) > 0 and

the marginal densities gi(·) > 0, i = 1, 2 that are continuously differentiable.

Since the optimal nonlinear pricing do not depend on the fixed cost K1 and K2, they cannot be

identified. Incentive compatibility implies that the equilibrium allocation rule qi(·) : [z0
i , z] 7! [qi0, qi]

is monotonic, hence can be inverted to provide a (inverse) mapping zi(·) ⌘ q�1
i (·), from sales (data)

to type. Then zij = zi(qij) is the consumer j0s type who chose qij > qi0 from Pi. Let H(·, ·) be

the conditional joint distribution of (q1, q2) given qi > qi0. H(·, ·) and the two marginals Hi(qi) =
R

H(qi, qj)dqj for i = 1, 2 and j 2 {1, 2}, j 6= i. can be identified from the data. Then

Hi(q) = Pr[qi  q|qi > qi0] = Pr[zi  zi(q)|zi > zi(qi0)] =
Gi(zi)� Gi(z0

i )

1 � Gi(z0
i )

,

hi(q) =
∂Hi(q)

∂qi
=

gi(zi)z0i(q)
(1 � Gi(z0

i ))
,

and hence
1 � Gi(zi)

gi(zi)
=

1 � Hi(q)
hi(q)

z0i(q).

Therefore, the distribution of qi provides some information about the distribution of the unobserved

type zi = zi(qij), as shown above, which is the main source of identification.12

Identification of Cost Parameters. To identify the marginal cost, I use the fact that there is no distor-

tion on the top. In other words, the highest type gets the quantity that maximizes the social welfare.

Consider P2: the data identifies q2 = max{q2i; j = 1, . . . , J}, but monotonicity implies that the type

that buys q2 is z2, i.e., q2(z2) = q2. Then the pricing function gives T0
2(q2(z2)) = T0

2(q2) = a2 + b2q2.

Substituting this in the Ramsey rule (18) gives a2 + b2q2 � m2 = 0, which identifies m2. Because of

the sequentiality of the game, the same argument cannot be applied to identify m1. Differentiating

T1(·) in Equation (21) with respect to q1 and solving for z01(q1) gives z0i(qi) = T00
i (qi) + bi � 2c2

bj+b j
,

which can be used in the optimal allocation rule

T0
i (qi) = mi +

1 � Hi(qi)
hi(qi)

z0i(qi). (23)

for q1(·) to get

T0
1(q1) = m1 +

1 � H1(q1)
h1(q1)

✓

T
00
1 (q1) + b1 �

2c2

b2 + b2

◆

, 8q1 2 [q10, q1].

12The problem is slightly complicated by the utility and the cost parameters.
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When the last equation is evaluated at q1 := q1(z1) = max{q1j; j = 1, 2 . . . , J} gives

m1 +

=0
z }| {

1 � H1(q1)

h1(q1)

✓

b1 + b1 �
2c2

b2 + b2

◆

= a1 + b1q1 ) m1 = a1 + b1q1. (24)

Identification of b1, b2, c and the support. The utility function is concave and the parameters b1 and

b2 induce “love for variety,” ceteris paribus. To see this consider the extreme of when the utility

is linear, i.e. b1 = b2 = 0, then the business-unit will care only about ads (q1 + q2), but not the

composition so let q2 = 0. But if b1 > 0, the marginal utility from q1 falls and q2 starts to become

important leading to q2 > 0. Intuitively, as the utility becomes more concave the choice will become

less and less asymmetric. This constraint is therefore most applicable to the highest type z1� who

buys the most asymmetric options: the maximum q1 and minimum q2. Hence, the value of b1 must

be small enough to rationalize this choice. The z1� type’s optimality condition (marginal utility

equals marginal price)

q1 � b1q1 + cq20 = a1 + b1q1

identifies c, as a function of q1 and b1. Similarly, the optimality for the z2� type

q2 � b2q2 + cq10 = a2 + b2q2 ) b2 =
cq10 + q2 � a2

q2
� b2

identifies b2, as a function of q2. Therefore, c and b2 are identified from {q1, q2, b1}. For any qi < qi, I

rewrite (23) as

ai + biqi = mi +
1 � Hi(qi)

hi(qi)

 

bi + bi �
2c2

bj + b j

!

, i, j 2 {1, 2}, i 6= j,

so that at q1 6= q̃1 gives

b1 + b1 =
a1 + b1q1 � m1

1�H1(q1)
h1(q1)

+
2c2

b2 + b2

b1 + b1 =
a1 + b1q̃1 � m1

1�H1(q̃1)
h1(q̃1)

+
2c2

b2 + b2

that can be solved to identify b1 as

b1 =
1
2

0

@

a1 + b1q1 � m1
1�H1(q1)

h1(q1)

+
a1 + b1q̃1 � m1

1�H1(q̃1)
h1(q̃1)

1

A� b1, (25)
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Then evaluating q2(z2) in (17) at (z2) gives z2 = q2

⇣

b2 � 2c2

b1+b1

⌘

+ m2 +
c2q20+ca1

b1+b1
, which together

with the definition of z2 identifies q2 as

q2 = q2b2 + m2 +
c2q20 + ca1 � cq1 � 2c2q2

b1 + b1
. (26)

Since some only choose (q10, q20), some normalization is important to determine the support. Al-

though there are many possible normalization that works, I make two that have some intuitive

meaning. First, I assume that the type space Q = [q1, q1] ⇥ [0, q2] and second, normalize the util-

ity from (q10, q20) of a firm with the lowest type (q1, q2) at zero:

Assumption 2. Normalization: Let q2 = 0 and u(q10, q20; q1, q2) = 0.

Together the assumption determine q1 as

q1 =
b1
2

q10 +
b2
2

q2
20

q10
� cq20. (27)

Identification of Marginal Densities. Since implementability implies that the equilibrium alloca-

tion rules (q1(·), q2(·)) are monotonic in z0s, these mappings can be inverted to express conditional

distribution of types as a function of observed demand distribution. That is using the ads placed

with Verizon (resp. Ogden) I can identify the conditional marginal distribution of z1 (resp. z2) given

that z1 � z0
1 (resp. z2 � z0

2). Recall that the relationship between type zij and ad qij is as follows

G̃i(zij) := Gi(zi)�Gi(z0
i )

1�Gi(z0
i )

=
1�Hi(qij)

hi(qij)
mi, which can then be used to recover (z1j, z2j) from the consump-

tion bundle (q1j, q2j). It is important to note, however, that the transformation is unique only for

some subset. For instance, for the set Cb it must be the case that both types are greater than the

threshold, so I can invert (11) and (17) to recover the pseudo-types

✓

z1j
z2j

◆

=

✓q�1
1 (q1j)

q�1
2 (q2j)

◆

=

0

@

q1j

⇣

b1 � 2c2

b2+b2

⌘

+ m1 +
ca2+c2q10

b2+b2
+

(1�H1(q1j))
h1(q1j)

m1

q2j

⇣

b2 � 2c2

b1+b1

⌘

+ m2 +
ca1+c2q20

b1+b1
+

(1�H2(q2j))
h2(q2j)

m2

1

A (28)

and hence the conditional joint distribution G(·, ·|z1 � z0
1, z2 � z0

2). Now consider C1 (resp. C2),

which includes the types that buy only from Verizon i.e. z2  z0
2. In this region, I can invert only

the allocation corresponding to Verizon (resp. Ogden) i.e. Equation (11) (resp. 17), to recover the

corresponding z1j (resp. z2j). On the other hand, I can only recover the proportion of firms with

(z1, z2)  (z0
1, z0

2), i.e. Pr(z1 = z0
1, z2 = z0

2) = Pr(q1 = q10, q2 = q20).13

13 Henceforth, I use the short hand (z1, z2), to mean one of these combinations: (z1, z2), (z1, z0
2), (z

0
1, z2) and (z0

1, z0
2), de-

pending on whether (z1, z2) is in Cb, C1, C2 and C0, respectively.
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4.2. Estimation. Our estimation is based on the equilibrium strategies of Section 2. More specifically,

I observe (q1, q2)j, j = 1, 2, ..., 6328. I assume that these purchases are the outcomes of the model

equilibrium in (11) and (17). I define our econometric model accordingly as

qij(zij) = [zij � G̃i(zij)� mi �
ca�i + c2qi0
b�i + b�i

]/[bi �
2c2

b�i + b�i
], (29)

for all zij 2 (z0
i , zi] and qij(zij) = qi0 otherwise, where i = 1, 2, indexes Verizon or Ogden and j =

1, 2, ..., 6328 are the business-units. The pair (z1j, z2j) is the source of randomness in the econometric

model. Besides the above two optimal purchase equations, I have five structural equations defining

the optimal price schedules, which give additional restrictions on the structural parameters.

I assume that every firm j draws (q1j, q2j) independently from F(·, ·). Given the tariffs choice of

the two publishers, every (q1j, q2j) determines a pair (z1j, z2j), distributed with G(·, ·). The estimation

procedure takes several steps. In the first step, the quantity sold by each publisher is separately used

to estimate the nonparametrically inverse hazard rate (1 � Hi(·))/(hi(·)) for i = 1, 2 using standard

kernel estimator. In the second step, I use the estimated inverse hazard rate, along with (29) and the

five structural equations mentioned above to estimate the utility and cost parameters.

4.2.1. Estimating the Density of Advertisment. Let N⇤
1 and N⇤

2 denote the number of firms purchasing

advertising space strictly larger than q10 and q20, respectively and qij denotes the quantity purchased

by each of those firms from i = 1, 2. To estimate Hi(·) and hi(·) one can use the empirical distribution

and Kernel density estimator, respectively:

Ĥi(q) =
1

N⇤
i

N⇤
i

Â
j=1

(qij  q), for q 2 [qi0, qi]

ĥi(q; x) =
1

N⇤
i

N⇤
i

Â
j=1

1
x

K
✓ q � qij

x

◆

, (30)

where x is a bandwidth, K(·) is a kernel. Among other things, however, it is known that: (a) the

Kernel estimation suffers from lack of local adaptability, i.e. it is sensitive to outliers and spuri-

ous bumps [Marron and Wand, 1992; Terrell and Scott, 1992]; (b) it surfers from boundary bias;

and (c) the most widely used data-driven bandwidth selection, plug-in, method is adversely af-

fected by the normal-reference rule [Sheather and Jones, 1991; Jones, Marron, and Sheather, 1996;

Devrôye, 1997]. Although various solutions have been proposed to address those shortcomings, I

use adaptive kernel density estimator based on linear diffusion processes as proposed by [Botev,

Grotowski, and Kroese, 2010]. The main idea is to view the kernel estimator as a transition density
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of a diffusion process, which leads to a simple kernel estimator with substantially reduced asymp-

totic bias and mean squared error with no boundary problem and an improved plug-in bandwidth

selection method. A key observation is that if suppose the Kernel in Equation (30) is a Gauss-

ian with location qj and scale x =
p

t, i.e. (suppressing the index i for the Verizon or Ogden)

K(q, qj; x) = (2pt)�1/2 exp(�(q � qj)
2/2t) then it is the unique solution to the diffusion partial dif-

ferential equation (Fourier heat equation):

∂

∂t
f̂ (q; t) =

1
2

∂

2

∂q2 f̂ (q; t), t > 0

with q 2 [q0, q] and initial condition ĥ(q; 0) = 1
N ÂN

i=1 d(q� qj) (the empirical density) and the bound-

ary condition

∂

∂t
f̂ (q; t)

�

�

�

q=q0
=

∂

∂t
f̂ (q; t)

�

�

�

q=q
= 0.

This means that a solution to a linear diffusion process (with proper boundary condition) is a valid

(nonparametric) kernel density estimator that is locally adaptive to boundary conditions. So I follow

[Botev, Grotowski, and Kroese, 2010] for estimation of the densities. Since I am not interested in

these estimates per se, in view of the space I do not present the estimates in the paper.14 Once

{Ĥi(·), ĥi(·); i = 1, 2} are estimated the parameter set X can be estimated. See Appendix (A) for

more on bandwidth selection.

4.2.2. Estimating the Parameters X. Now, I outline the steps to estimate the parameters : (i) fix q2 = 0

and estimate m1 and m2; (ii) choose any two values of q1j and q̃1j and use (25) to estimate b1; (iii)

Then estimate parameters X by solving

X̂N = arg min
X2X

sN(X)0sN(X),

where

s(X) =

0

B

B

B

B

B

B

B

B

B

@

cq10 � a2 � (b2 + b2)q2 + q2

q1 = q1(b1 + b1) + a1 � cq20

(b2 + b2)q2 � cq10 � q1 + a2

(q2 � q2b2 � m2)(b1 + b1)� c2q20 � ca1 + cq1 + 2c2q2

(q1 + cq20)2q10 � b1q2
10 � b2q2

20

1

C

C

C

C

C

C

C

C

C

A

,

are the equations that identify the paramaters. Since the parameters are identified there is a unique

solution to the above minimization problem. After estimating X, we can recover the pseudo types

14I use the computer code provided by [Botev, Grotowski, and Kroese, 2010] to estimate the densities.
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z1 and z2 and estimate the marginal (conditional) distributions and densities {Ĝ⇤
i (·), ĝ⇤i (·)} using

the same diffusion method as outlined above. The basic consistency result is stated below without

the proof, which is a straightforward extension of the consistency results by [Guerre, Perrigne, and

Vuong, 2000; Perrigne and Vuong, 2011a].

Lemma 2. Suppose all the assumptions mentioned so far is valid. Then:

(1) sup |q̂i � qi|
a.s! 0 and sup |q̂i0 � qi0|

a.s! 0.

(2) q̂i = qi + Oa.s[(log log N⇤
i )/N⇤

i ].

(3) supq2(qi0,qi ]
|| log[(1 � Ĥ⇤

i (q))/(1 � H⇤
i (q))]||

a.s! 0

(4) For any qi 2 (qi0, qi), supqi2(qi0,qi ]
|ẑi(·)� zi(·)|

p! 0 as N⇤
i ! •.

(5) supzi2(z0
i ,zi ]

|ĝ⇤i (zi)� g⇤i (zi)|
a.s! 0 as N⇤

i ! •, where g⇤i (·) is the conditional density given zi > z0
i .

Once again, I do not present these estimates, because ultimately I am interested only in the joint

density, which is addressed in next.

4.2.3. The Joint Distribution. Ultimately, I want to estimate F(·, ·) and not just the conditional marginals

G̃1(z1) and G̃2(z2). Recall the data generating process: a firm j 2 {1, 2, . . . , N} draws (q1j, q2j) i.i.d.

from F(·, ·). Given (T1(·), T2(·)) the corresponding (z1j, z2j) is determined and j chooses q1j(z1j) and

q2j(z2j). Thus unless the types are independent, the observed ads are not independent. Also recall

that the null of independence was rejected. The question I am interested in is to combine the two

(conditional) marginals and then extend it to the whole support. To achieve that goal, I propose to

use copula. Although the marginals are censored, they are nonparametric, and hence it is conve-

nient to adopt a parametric form for the dependence function C
k

(·, ·) (defined later) while keeping

marginals unspecified. But there is no guidance as to what should the parameter k be as there are

many families of one parameter copulas, e.g. Gaussian, t� copula, etcetera. Since it is not entirely

obvious what family is appropriate, choosing one without due diligence with respect to the data will

defy the whole purpose of nonparametric identification of the conditional densities. So I propose

to use the classic goodness-of-fit test and Vuong’s non-nested model selection test to find the “best”

family. In essence the method estimates the dependence between types using data on those who buy

from both and uses this dependence to select the family that provides the best global fit. I rely heavily

on the current statistic literature on empirical copula and begin by formally introducing copula.

C : [0, 1]2 ! [0, 1] is the two-dimensional copula if C(·, ·) is the joint distribution of random

variable in [0, 1]2 with uniform marginals. Since Gi(·) is a uniform random variable, the copula

representation of G(z1, z2) is C(z1, z2) := C(G1(z1), G2(z2)). The seminal Sklar’s theorem [Nelson,

1999] guarantees that C(·, ·) is unique, but as mentioned earlier cannot be determined (nonparamet-

rically) from the data. I assume that C(·, ·) is known up to a parameter, i.e. it belongs to the class
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C0 = {C
k

: k 2 G ⇢ }, where G is an open set and estimate k. Some of the widely used parametric

families are Clayton, Archemedean, Gaussian copulas. If the family of copula was known, i.e. if the

null H0 : C 2 C0, were known to be true, then the parameter k could be estimated either by maxi-

mizing the joint likelihood function or by matching some measure of dependence such as Kendall’s

t, or Spearman’s r. However, I do not know the null, in other words I do not know if the copula is

Clayton or Gaussian.

Since the marginal distribution of zi is unspecified, I can replace it by its empirical counterpart

Ĝi(·) = 1
J ÂJ

j=1 (zij  ·). It is easier to work with (imputed) rank r̂ij instead of the variable zij

and view the copula to be based on a collection of pseudo values (u1, . . . , uJ) 2 R2J where ûij :=

rij(J + 1) = Ĝi(zij)⇥ J/(J + 1).15 The first sensible thing to do is to check if z1 and z2 are independent,

even though it was verified that q1 and q2 are not independent for robustness. If they are independent

then the joint distribution is simply product of two marginals. So, I test

H0 : 8(u1, u2) 2 [0, 1]2, C(u1, u2) = u1u2

HA : 9(u1, u2) 2 [0, 1]2, C(u1, u2) 6= u1u2.

Let CJ(u1, u2) = J�1 ÂJ
j=1 (û1j  u1, û2j  u2) be the empirical copula. Then I compute the classic

Cramér- von Mises statistic

TN =
Z

[0,1]2
J
�

CJ(u1, u2)� u1u2
 2 du1du2,

to test for independence. There are two issues that complicates implementation of the test. First, the

asymptotic distribution of TJ under the null is not distribution free [Genest and Rémillard, 2004], and

second, the distribution is also affected by the first-step errors from estimating the pseudo z1 and z2.

So, I compute the critical values using Bootstrap procedures as outlined in [Genest and Rémillard,

2004; Kojadinovic and Holmes, 2009]. The test statistic is estimated to be T̂J = 1.66467 with the p�

value equal to 0.000499. Therefore I conclude that z1 and z2 are not independent.

The empirical Copula CJ(·, ·) is a consistent estimator of C(·, ·), [Fermanian, Radulović, and Wegkamp,

2004]), so a natural goodness-of-fit test would use some form of distance between the estimate of the

candidate family C
k J and CJ(·, ·) (under H0 that it is true). Let

(u1, u2) =
p

N{CJ(u1, u2)� C
kJ (u1, u2)}, (31)

15This transformation is without loss of generality because copulas are invariant to continuous, strictly increasing trans-
formations. The scaling factor J/(J + 1) ensures that the copula is well behaved at the boundary of [0, 1]2.



COMPETITIVE NLP 25

be an empirical process, and for a given family, let k̂ be the value of the parameter that maximizes

the pseudo-log likelihood, i.e.

k̂ = arg max
k2G

(

l(k) :=
N

Â
i=1

log
⇥

C
k

(Ûi1, Ûi2)
⇤

)

,

as defined by [Genest, Ghoudi, and Rivest, 1995; Genest, Quessy, and Rémillard, 2006]. Then, [Gen-

est, Rémillard, and Beaudoin, 2009] showed that the Cramér-von Mises statistic

J =
Z

[0,1]2
J(u1, u2)

2dCJ(u1, u2) =
J

Â
i=1

n

CJ(û1j, û2j)� C
kJ (û1j, û2j)

o2

can be used as a goodness-of-fit criteria and the test is consistent. To characterize the asymptotic dis-

tribution of the test I use the following weak convergence result for (31) from [Fermanian, Radulović,

and Wegkamp, 2004]. Let C[j]
k

= ∂C
k

∂uj
and h

k

be a C
k

� Brownian bridge.16

Theorem 2. Let C
k

have partial derivatives. Then the empirical process (31) (u1, u2) converges weakly in

l•([0, 1]2) to the tight centered Gaussian process

˜ (u1, u2) = h

k

(u1, u2)� h

k

(u1, 1)C[1]
k

(u1, u2)� h

k

(1, u2)C
[2]
k

(u1, u2), u1, u2 2 [0, 1].

Using this result, the p� value can be approximated from the limiting distribution of N . Approx-

imating the p� value, however, is computationally costly because the limiting distribution not only

depends on the asymptotic behavior of J but also on the estimator k̂.17 Therefore, the approximate

p� values can only be obtained from a Bootstrap procedure outlined by [Genest and Rémillard,

2008]. In practice this is a slow method so, I use the multiplier central limit theorem to determine the

large sample distribution of the test statistic; see [Kojadinovic and Yan, 2011]. I implement Cramér-

von Mises the test for seven widely used families of copula and for each family estimate the test

statistic, the corresponding parameter k̂ and the p� value based on 10,000 Bootstrap replications.

The results are reported in first column of Table 3. It is evident then that only Joe copula provides

the best fit.

I also consider Vuong’s non-nested model selection test à la [Vuong, 1989]. To implement the test, I

consider any two families (from the seven families) and and give +1 to the one that is selected by this

test and �1 otherwise. I follow the bootstrap procedure of [Clarke, 2007] to compute the p� values

For example, between Frank and Gaussian if Vuong’s test selects Frank, it gets +1 and Gaussian gets

�1. I repeat this pair-wise test for all such pairs and add all the scores and present that in Table 3).

16 A Brownian bridge is a tight centered Gaussian process on [0, 1]2 with covariance function E[h
k

(u1, u2)hk

(u0
1, u0

2)] =
C

k

(u1 ^ u0
1, u2 ^ u0

2)� C
k

(u1, u2)Ck

(u0
1, u0

2), u1, u2, u0
1, u0

2 2 [0, 1] and a ^ b = min{a, b}.
17Using pseudo log likelihood is just one of many ways to estimate the parameters in the literature. For robustness, I also

estimated the parameters that maximize the Kendall’s Tau and Spearman’s Rho, and reach the same conclusion.
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Family k̂ CvM p� value Vuong Test
Gumbel-Hougaard 1.12 0 2

Clayton 0.09 0 -6
Frank 0.24 0 -2

Gaussian 0.63 0 -4
Plackett 1.618 0 2
t (df=4) 0.16 0 2

Joe 1.2 0.12 6
TABLE 3. Goodness-of-Fit and Vuong test Results: Estimated parameters of copula based on Pseudo-
MLE and p� values of the Cramér-von Mises statistic are computed using 10,000 Bootstrap replications
and the rank in Vuong test.

The family with the highest score is the one selected. Again I find that this criteria also selects Joe

copula as the best model. Therefore, one can conclude that the best family of Copula is Joe and with

k̂ = 1.206497 (s.e. = 0.0137) . Then the estimated joint density of (z1, z2) becomes18

ĝ(z1, z2) = (k̂ � 1)

 

1 �
2

’
i=1

n

(1 � (1 � Ĝi(zi))
k̂)(1 � Ĝi(zi))

k̂�1 ĝi(zi)
o

!

.

Then the estimated joint density of (q1, q2), Figure 4, evaluated at zj(q) ⌘ zj(q1, q2) becomes

f̂ (q1, q2) =

 

1 �
2

’
j=1

n

(1 � (1 � Ĝi(zi(q)))
k̂)(1 � Ĝi(zi(q)))

k̂�1 ĝi(zi(q))
o

!

⇥ (1 � k̂)

 

1 � ĉ2

(b̂1 + b̂1)(b̂2 + b̂2)

!

.

4.3. Estimation Results. The estimated gross utility function becomes

û(q1, q2, q1, q2) = q1q1 �
1.45

2
q2

1 + q2q2 �
0.414

2
q2

2 � 0.02 ⇥ q1 ⇥ q2.

As can be seen ĉ < 0, which shows that the two ads can be treated as substitutes, although the rate

of substitution is weak. The marginal cost of printing for VZ at m̂1 = 7.768 is twice as that of OG at

m̂2 = 3.145, which captures the differences in the paper size and quality. The support is estimated

to be [109.39, 896.15] ⇥ [0, 896.15]. Recall that z0
i is the threshold type below which consumers buy

qi0. [Armstrong, 1996] showed that in a multidimensional screening, it is always optimal for the

seller to price the goods in such a way that some positive fraction of consumers are not served. The

threshold type z0
i then depends on the density of consumer type, e.g., if Gi(·) has thicker lower tail

than upper tail then z0
i should be closer to zi as fewer types should be excluded and vice versa.

The estimates of the threshold types are z0
1 = 978.51 and z0

2 = 298.83, for VZ and OG, respectively,

which suggests that ĝ2(·) has relatively more mass at the lower end than ĝ1(·). This also means that

18A 2-dimensional copula C is called Archimedean if it has the representation C(u1, u2) =
f

�

f

�1(u1) + f

�1(u2)
�

, (u1, u2) 2 [0, 1]2, where f(·) : + ! + is an Archimedean generator, i.e. continuous, strictly
decreasing on {f > 0} and satisfying f(0) = 1 and limt!• f(t) = 0. For Joe copula, f(t) = 1 � (1 � exp(�t))1/k .
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FIGURE 4. Estimated Joint PDF and CDF of recovered (q̂1, q̂2)

there is stiffer competition between VZ and OG at the lower end than at the upper end, which is

reflected in the differences in prices: the difference in average price per picas widens as I move from

lower category to higher, see Table 1. And the fact that VZ’s prices are consistently higher across

comparable categories than that of Ogden suggests that Verizon enjoys a higher brand effect.

Advertising is a business-to-business activity, so the demand or the willingness to pay for dif-

ferent sizes might depend on its usefulness in creating more demand via exposure. For example,

a single doctor in a market might have less value for an ad than a market with few doctors. It is

also conceivable that the value might be low if there are many doctors, in other words the value

for advertisements might be an inverse - U shaped. Although ads are treated as final consumption

commodity, on account of complexity of the problem, once (q̂1j, q̂2j), is obtained, this question can be

addressed by running a simple OLS regression on some measure of level of competition. I estimate

the following model:

q̂ij = ai0 + ai1#Cij + ai2(#Cij)
2 + ai3avg(qij) + ai4std.dev(qij) + ai5Nationalij + ai6Guideij + eij,

where q̂ij is the firm j0s (pseudo) marginal willingness to pay for advertisement with Pi, #Cij is the

number of firms with the same sub-heading as j who advertise with Pi under the same heading as j,

likewise (#Cij)
2 is the square of that, avg(·) and std.dev(·) are the average and standard deviation of

advertisement sizes bought by firms in that industry. Nationalij is a dummy if the firm has a national

brands (or trademark) and Guideij is a dummy if j opts for guide option. Recall the Guide provides
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q̂1 q̂2
no. of Firms 5.25 (3.717) 0.16 (0.1751)

Sqr. no. of Firms -0.56 (0.25) (**) -0.0004 (0.001)(*)
Avg. Size 10.53 (0.25) (**) 1.46 (0.45) (**)
Std. Size 0.69 (.39) (*) -0.01 (0.11)
National -626.34 (379.77)(*) 106.57 (24.22) (**)

Guide 669.36 (249.17) (**) 328.06 (16.13)(**)
TABLE 4. OLS: Result of regression of pseudo types q̂ on number of business units and its square under
the same heading, the average size of ad bought under the heading, the standard deviation of the size,
whether or not the firm is national and if it opts for guide option. (⇤) denotes significance at 10% and (⇤⇤)
at 5%.

additional advertising space by listing specialities and it covers Attorneys, Dentists, Physicians In-

surance companies, etcetera. The result for both Verizon and Ogden is presented in Table 4 where the

standard errors are reported in parenthesis and the (**) and (*) denote estimates that are significant

at 5% and 10% confident level, respectively.

As it can be seen the direct effect of number of similar business units on the willingness to pay

is positive but insignificant while the effect decreases significantly as shown by the coefficient of

the Square number of firms. This suggests that the effect of competition decreases with the level of

competitors, and has inverse-U shape effect which has been suggested by [Porqueras, Julien, and

Chengsi, 2012]. An interesting implication of the regression is that whether or not a firm has na-

tional presence affects q̂1 negatively but q̂2 positively. The model does not explain either the demand

pattern of firms with national brand or the brand effect of the publisher, because the demand side is

captured by reduced form parameters. Explicitly modeling the demand side is important but beyond

the scope of this paper.

Cost of Asymmetric Information. Adverse selection leads to second best outcome, and hence a loss of

social welfare. It is, therefore, important to quantify the loss and how it is distributed across different

consumers; in some markets, significant departure from the first best might also warrant government

intervention. I conclude this section by computing the effect of asymmetric information on consumer

welfare. To achieve that, I solve a Stackelberg duopoly game where the sellers know the type of each

consumer and chooses a price that extracts all the rent and allocates a quantity that equate (residual)

marginal utility with marginal cost, while assuming that even in this counterfactual exercise both

seller offer q10 and q20 for free. Once the allocation rule and prices are determined, one can compare

the difference in the utility in the data with this perfect information case.

In the second stage, a (q1, q2)� consumer who buys q̃1 from VZ and paid t1 gets gross utility

D(q2; q̃1; q) = u(q2, q̃1; q)� t1
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if she buys q2 from OG. For such q2 the maximum price she is willing to pay (and what will be

charged by OG) is

t2(q2) = q2(q2 � q20)�
b2
2
(q2

2 � q2
20) + cq̃1(q2 � q20). (32)

Ogden will make a take it or leave it offer of q2 at t2 that maximizes the profit t2(q2)� m2q2. From

equation (32), OG’s best response is q2(q̃1) =
q2+cq̃1�m2

b2
. Now, in the first period the maximum price

VZ can charge for any q1 is

t1(q1) = q1(q1 � q10) + q2(q2(q1)� q2(q10))�
b1
2
(q2

1 � q2
10)

� b2
2
(q2(q1)

2 � q2(q10)
2) + c(q1q2(q1)� q10q2(q10))� (t2(q1)� t2(q10)).

where t2(q10) can be determined by evaluating (32) at q10. Then, q1 = (q1 � m1)/b1 maximizes

the profit t1(q1)� m1q1 and the corresponding q2 (as a function of q1) is q2 = [b1(q2 � m2) + c(q1 �

m1)]/[b1b2]. Let D2(q⇤1, q2; q) be the residual demand for OG when VZ sells q⇤1, then the profit function

for OG is
R q2

q20
D2(q⇤1, y)dy � K2 � m2q2. Thus the best response is to choose q⇤2 such that D(q⇤1, q⇤2) =

m2, which equates the marginal benefit of q⇤2 to the marginal social cost of producing q⇤2. The op-

timal allocation for VZ can be determined, along OG’s best response function. Given the quasi-

linear utility, I find that VZ gains $2,651,052,914 while OG gains $48,330,062 and the firms will lose

$2,699,115,638. The resulting net social welfare gain is in the order of $267,337. One would expect

that under full information, the seller will extract all consumer surplus, but because (q10, q20) is free,

the consumer’s indirect utility under complete information will not be zero but be equal to its valu-

ation for (q10, q20), which is increasing in type. See Table 5, which presents the quantity pair under

incomplete information, under full information and the corresponding difference in utility. As pre-

dicted by the theory, since the quantity allocation is not distorted for the highest type, the difference

in the quantity under the two informational regime decreases with the allocation under incomplete

information. The total welfare loss amounts to approximately 3.8% of the sales revenue.

5. CONCLUSION

In this paper I propose a framework for empirical analysis of competitive (Stackelberg duopoly)

nonlinear pricing with multidimensional adverse selection. I study the problem of identification of

utility and cost functions and the joint density two dimensional types. Normalization of the out-

side option for the lowest types is sufficient for identification except the joint density, and that tran-

spires because some do not participate while only few buy from both sellers and only the truncated

marginals can be nonparametrically identified. I use copula to determine the joint density from the
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Qt: Incomplete Info. Complete Info. # Obs D Utility
(101, 210) (104, 210) 230 $87,706
(106, 231) (108, 243) 53 $99,017
(137, 231) (139, 243) 27 $138,871
(137, 248) (139, 260) 31 $144,479
(137, 288) (139, 300) 28 $159,312
(237, 432) (240, 442) 9 $425,865
(572, 517) (575, 527) 4 $1,900,000
(572, 843) (575, 851) 1 $2,200,000

(1709, 697) (1711, 706) 6 $15,000,000
(1709, 1154) (1711, 1160) 3 $16,000,000
(3171, 2153) (3173, 2153) 1 $55,000,000
(6330, 1621) (6330, 1624) 1 $210,000,000

TABLE 5. Welfare cost of asymmetric information: Comparison of welfare under incomplete Informa-
tion and a counterfactual of complete information.

unspecified marginals, and use the classic goodness-of-fit and the Vuong’s test to determine the para-

metric family of copula to use. The identification argument is constructive and provides a base for

the estimation. Then I implement the estimation procedure in a data on advertisements bought from

two Yellow Pages directories in Central Pennsylvania. The estimates reasonably rationalize the ob-

served data and suggest that the consumers are sufficiently heterogeneous in terms of the valuation

for the two advertising choices. Interestingly, the estimates suggest that the competition between the

two publishers is higher at the lower end of the market, where the density puts more mass. This

explains why the difference between per unit prices diverge as we move up the size of ads.

Estimation of the joint density of unobserved consumer types, under competition, is a prerequi-

site to quantify the effect of competition on welfare, or the effect of mergers on product varieties.

To that end, the estimated density can be used to simulate a merger by solving the multidimen-

sional screening problem for a multi-product monopolist à la [Rochet and Choné, 1998; Ekeland and

Moreno-Bromberg, 2010]. Such a line of enquiry is new and important, but it is beyond the scope of

this paper.

Therefore, this paper aims to contribute to the literature in estimation and inference of market data

that are characterized with asymmetric information. In particular it contributes to new literature

on adverse selection, which for the most part either considers only a monopoly seller (and ignores

competition) or uses only the demand side information.

APPENDIX A. BANDWIDTH SELECTION

In this section I present the procedure followed to estimate the Kernel density and is taken from

[Botev, Grotowski, and Kroese, 2010]. Given N IID realizations Y = {Y1, . . . , YN} from an un-

known continuous density f̃ (·). The Gaussian kernel density estimator is defined as ˆ̃f (y; t) =



COMPETITIVE NLP 31

1
N ÂN

j=1

⇣

1p
2pt

e�(y�Yi)
2/2t

⌘

. Asymptotically optimal value of x minimizes the Asymptotic Mean In-

tegrated Squares of Error and is given by ⇤t =
⇣

1
2N

p
p|| f̃ 00 ||2

⌘2/5
. Since the optimal ⇤t depends on the

functional || f̃ 00||2 and using the estimator of this functional gives the following plug-in method to se-

lect optimal bandwidth ⇤t̂ =
⇣

8+
p

2
24

3
N
p

p/2|| f̃ (3) ||2

⌘2/7
, but this requires estimating f̃ (3) and requires

us to solve for a fixed point of an infinite sequence; see [Wand and Jones, 1995] for a solution. For

the kernel density based on diffusion process the following algorithm can be used: (i) From the data

estimate the Gaussian kernel density using ⇤t̂; (ii) Estimate ||L f̃ ||2 via the plug-in estimator from step

1 using ⇤t, where L(·) := 1
2

∂

∂y (a(y) ∂

∂y (
·
f̃ )) is a differential operator with a(y) = f̃ (y)i, i 2 [0, 1]; and

(iii) Use estimate from step 2 with the variance s to get the optimal bandwidth: t⇤ =
✓

f̃ [s
�1(Y)]

2N
p

p||L f̃ ||2

◆

.
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APPENDIX B. TABLES

Color Category 1 Color Category 2 Color Category 3 Color Category 4
VZ Picas VZ Percentage OG Picas OG Percentage VZ Price OG Price VZ Price OG Price VZ Price OG Price VZ Price OG Price
Listing

12 0.4% 9 0.5% $0 $0
18 0.6% 12 0.66% $151 $134 $147
27 0.89% 15 0.83% $290 $240 $492 $278
36 1.19% $492 $845

Space Listing
54 1.79% 46 2.49% $504 $490 $528
72 2.38% 92 4.98% $781 $587 $650

108 3.58% 138 7.46% $1,134 $1,008 $1,789 $1,096 $2,873
144 4.77% 184 9.95% $1,436 $1,154 $2,242 $1,231 $3,592
216 7.15% 230 12.44% $2,080 $1,276 $3,289 $1,363

Display
174 5.76% 211 11.43% $1,638 $1,118 $2,458 $2,609 $1,398 $2,873 $1,624
208 6.90% $1,915 $2,861 $3,049 $3,326
355 11.77% 438 23.74% $3,074 $1,722 $4,612 $4,927 $2,254 $5,381 $2,655
537 17.77% $4,473 $6,703 $7,145 $7,812
735 24.34% $5,872 $8,808 $9,388 $10,256

1,110 36.76% $8,341 $12,512 $13,344 $14,579
592 32.11% $2,163 $2,814 $3,328

1,485 49.18% 908 49.19% $10,093 $3,372 $15,133 $16,128 $4,420 $17,640 $5,084
1,220 66.15% $4,491 $5,875 $6,936

3,020 100.00% 1,845 100.00% $18,510 $6,324 $27,770 $29,610 $8,290 $32,395 $9,435
6,039 200.00% $34,272 $51,434 $54,835 $60,002

TABLE A-1. Menus offered by Verizon (VZ) and Ogden (OG).

Verizon # Purchases % Sales Revenue % Revenue
Standard Listing 2,302 33.74% $0 0%

Listing 2,222 32.56% $614,143 10.42%
Space listing 1,374 20.14% $1,002,857 17.02%

Display 925 13.56% $4,275,642 72.56%
Total 6,823 100.00% $5,892,642 100.00%

Ogden
Standard Listing 5,913 86.66% $0 0%

Listing 484 7.09% $105,805 12.75%
Space listing 167 2.45% $98,341 11.85%

Display 259 3.80% $625,441 75.40%
Total 6,823 100.00% $829,587 100.00%

TABLE A-2. Distribution of Sales and Revenues by Sizes.
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SUPPLEMENT: AN EMPIRICAL ANALYSIS OF COMPETITIVE
NONLINEAR PRICING

GAURAB ARYAL†

This note is a (optional) note to [Aryal, 2013] and collects all the derivations that

are referred to in the main paper and is not meant for publication. Section 1 pro-

vides all the proofs and derivation from the main paper and Section 2 provides an

alternative method to derive the optimal allocation for Principal 2, following [Ro-

chet and Choné, 1998; Basov, 2001] and the remaining section provides the proofs

left unsolved in the main paper.

1. PROOFS

In this section we collect the proofs in the main paper. I begin with Theorem 1 in

[Aryal, 2013].

Theorem 1. (Rochet and Choné [1998]) Under our maintained assumption on preferences

and cost and assuming g1(·) has full support, i.e. there exists e > 0 such that g1(z1) � e

for all z1 2 [z, z], there exists a unique solution to the optimization problem.

Proof. The proof relies on the existence result in [Rochet and Choné, 1998] and

therefore for original treatment see the paper. Even though their paper is concerned

with a multidimensional screening for a monopoly, it is general enough to be ap-

plicable for the case of follower. For P2, contract chosen by P1 can be treated as

exogenous parameters which affect the profit. Therefore, working with the suffi-

cient statistic z2 the existence result from [Rochet and Choné, 1998], Theorem 1 is

applicable. The proof entails standard steps: First, we show that P2 as a function

of s2 is continuous and concave on Z⇤
2 (defined below) and Z⇤

2 is closed and convex.

Then we show that P2 is coercive (defined below). The uniqueness of the optimal

best response follows from the concavity.
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We define a normed vector space of functions H1(Z2), functions s2 from Z2 =

[z2, z2] to R, such that s2 and 5s2 are square integrable, i.e. H1(Z2) = {s2 : s2 2
L2(Z2),5s2 2 L2(Z2)},1 with norm defined as

|s2|H1 =
Z

Z2

(s2
2 + ||5 s2||2)dz2.

From lemma (3.1) in the text, we know 5s2(z2) = q2(z2), and suppressing z2 we

can write the expected profit for P2 as

P(s2) =
Z

Z2

[T2(5s2)� m2 5 s2] 1(s2 � s0
2)g2(z2)dz2 � K2 � m2q20G2(z0

2)

=
Z

Z⇤
2

(

✓

z2 � ca1 � c2 5 s2

b1 + b1

◆

(5s2 � q20)� b2

2
(5s2

2 � q2
20)� m2(5s2)� s2

)

⇥g2(z2)dz2 � K2 � m2q20G2(z0
2),

where Z⇤
2 = {s2 2 H1(Z2) : s2 � s0

2} and s0
2 is the utility if an agent of type z2

decides to purchase only q20. Our objective is to show that there exists s⇤2 2 Z⇤
2 such

that P2(s⇤2) � P2(s2) for all s2 2 Z⇤
2 . Given the contract choice of P1, continuity

of P2(s2) as a function of s2 2 Z⇤
2 follows from our assumption of continuity of

g2(z2) and the definition of the functional P2. The functional can be shown to be

concave (see the main text) then the existence follows if we can show that P2(s2)

is coercive, i.e. P2 is coercive if P2(s2) ! �• when |s2| ! •; see Kinderlehrer

and Stampacchia (1980) for proof of this sufficient condition. Intuitively, coercive

functions are those functions that decrease without limit on any path that extends

to infinity.

For all s2 2 H1(Z2), let s2 be the mean value of s2 in Z2, i.e. s2 = 1
|Z2|
R

Z2
s2(z2)dz2.

Then from Poincaré’s inequality implies existence of a constant M < • such that

for s2 2 H1(Z2), |s2 � s2|  M|5 s2|L2 . Then using s2 = s2 � s2 + s2 we get

|s2|2L2 = |s2 � s2 + s2|2 = |s2 � s2|2L2 + s2
2  M2|5 s2|2L2 + s2

2.

1H1(Z2) is a Hilbert space also known as a Sobolev space, where the functions and their first
derivatives are square integrable and vanish at the boundary. We are interested in such spaces be-
cause the elements in this space are well behaved, thus enabling one to show that partial differential
equations that characterize optimal nonlinear prices have solutions.
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Then from the definition of the norm in H1(Z2) we note the following relationship:

|s2|H1 ! • , either|5 s2|2L2 ! •, or s2
2 ! •. (1)

Then we observe the following relation:

P2(s2) 
Z

Z2

(

✓

z2 +
c2 ·5s2

b1 + b1

◆

(5s2 � q20)� b2

2
(5s2

2 � q2
20)� m2 ·5s2 � s2

)

g2(z2)dz2


Z

Z2

(

✓

z2 +
c2 ·5s2

b1 + b1

◆

5 s2 � b2

2
·5s2

2 +
b2

2
q2

20 � m2 ·5s2 � s2

)

g2(z2)dz2

=
Z

Z2

(z2 ·5s2 � (s2 � s2)) g2(z2)dz2 � s2 +
b2

2
q2

20

�
Z

Z2

(

✓

b2

2
� c2

b1 + b1

◆

5 s2
2 + m2 ·5s2

)

g2(z2)dz2


Z

Z2

(z2 ·5s2 � (s2 � s2)) g2(z2)dz2 � s2 +
b2

2
q2

20 � e

✓

b2

2
� c2

b1 + b1

◆

|5 s2|2L2

Therefore,

P2(s2)  M|5 s2|L2 � s2 +
b2

2
q2

20 � e

✓

b2

2
� c2

b1 + b1

◆

|5 s2|2L2 (2)

which with (A.1) implies that if |s2|H1 ! • then P2 ! �•. Now suppose s1
2 and

s2
2 are two optimal best response. Then, using concavity of the functional P2 we

can show that the optimal s2 is unique. Once s2 is unique, it is clear that q2(·) that

implements s2 is unique and so is z0
2.

⇤

Lemma 1. The P2’s best response to a quadratic pricing rule of P1 is also quadratic if, and

only if, G2(z2) = 1 � [1 � (V + xz2)]r for some parameters V, x and r > 0.

Proof. Optimal pricing function must satisfy

T(z2) =

✓

z2 � ca1 � c2q2

b1 + b1

◆

(q2 � q20)� b2

2
(q2

2 � q2
20)� s2(z2). (3)
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and the optimal allocation rule is given by

q2(z2) =
z2 � 1�G2(z2)

g2(z2)
� m2 � c2q20+ca1

b1+b1

b2 � 2c2

b1+b1

, 8z2 2 (z0
2, z̄2] (4)

such that q2(z2) = q20 otherwise. Using (4), let h̃2(z2), 8z2 2 (z0
2, z̄2] and t2(q2) be

such that

h̃2(z2) := z2 � 1 � G2(z2)
g2(z2)

= q2

✓

b2 � 2c2

b1 + b1

◆

+m2 +
c2q20 + ca1

b1 + b1
:= t2(q2).

Let z2 ⌘ h̃�1
2 [t2(q2)], then using it in (3) gives

T2(q2) =

✓

h̃�1
2 (t2(q2))� ca1 � c2q2

b1 + b1

◆

(q2 � q20)� b2

2
(q2

2 � q2
20)

�
Z q2

q20

(t � q20)
1

h̃02(h̃
�1
2 (t2(t)))

t

0
2(t)dt =

✓

h̃�1
2 (t(q2))� ca1 � c2q2

b1 + b1

◆

(q2 � q20)

�b2

2
(q2

2 � q2
20)� [h̃�1

2 (t2(t))(t � q20)]
�

�

q2
q20

+
Z q2

q20

h̃�1
2 (t2(t))dt

=
Z q2

q20

h̃�1
2 (t2(t))dt � ca1 � c2q2

b1 + b1
(q2 � q20)� b2

2
(q2

2 � q2
20),

which shows that the T2(q2) is quadratic if and only if the first term in the right

hand side is quadratic, or the integrand h̃�1
2 (t2(t))) is linear in t or equivalently

1�G2(z)
g2(z)

is linear. It is enough to show that 1�G2(·)
g2(·) is linear iff G2(z) = 1 � [1 � (V +

xz2)]r. If part is obvious. Now, suppose that 1�G2(z2)
g2(z2)

= A � Bz2, B > 0, then

g2(z)
1 � G2(z)

=
1

A � Bz2
) � g(z2)

1 � G(z2)
= � 1

A � Bz2
) d ln(1 � G(z2))

dz2
=

1
B

d ln(A � Bz2)
dz2

.

Integrating both sides allows us to write
Z z2

z2

d ln(1 � G(w))
dw

dw =
Z z2

z2

1
B

d ln(A � Bw)
dw

dw

) ln(1 � G(z2)) =
1
B

ln
✓

A � Bz2
A � Bz2

◆

) G(z2) = 1 �
✓

A � Bz2
A � Bz2

◆

1
B

It is easy to check that G(z2) = 0 and 0  G(·)  1 and G(z2) = 1 whenever A = Bz2. Therefore,

G(z2) = 1 �
✓

Bz2 � Bz2
Bz2 � Bz2

◆

1
B

= 1 �
✓

1 � z2 � z2
z2 � z2

◆

1
B

= 1 �
✓

1 �
✓

z2
z2 � z2

� z2
z2 � z2

◆◆

1
B

:= 1 � (1 � {V + xz})r .

⇤
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Lemma 2. The coefficients of P1’s optimal tariff function a1, b1 are unique.

Proof. It is important to observe that not only q but also z1, z1 and Y(t) are functions

of a1 and b1. Therefore, we shall use Leibniz’s method to compute the first order

necessary conditions. First we do some calculations:

Y(t) =

✓

2c2(b1 + b1)
b2l2(b1 + b1)� 2c2(l2 � 1)

� (b1 + b1)

◆

t � (ca2 + c2q20)(b1 + b1)
b2l2(b1 + b1)� 2c2(l2 � 1)

� a1

=

✓

2c2(b1 + b1)� b2l2(b1 + b1)2 + 2c2(b1 + b1)(l2 � 1)
b2l2(b1 + b1)� 2c2(l2 � 1)

◆

t �
⇢

(ca2 + c2q20)(b1 + b1)
b2l2(b1 + b1)� 2c2(l2 � 1)

+ a1

�

= At � B.

The FOC with respect to a1 is:

(1 � G1(Y(q)))
| {z }

=0

(a1 + b1q1 � m1)
dq
da1

+
Z q1

q10

r1(z1 � Y(t))r1�1

(z1 � z1)
r1

(�Y
a1)(a1 + b1t � m1)

+

✓

z1 � Y(t)
z1 � z1

◆

r1

dt = 0

) �Y
a1

⇢

(a1 � m1)
Z q1

q10

r1(z1 � Y(t))r1�1

(z1 � z1)
r1

dt + b1

Z q1

q10

r1(z1 � Y(t))r1�1

(z1 � z1)
r1

tdt
�

+
Z q1

q10

✓

z1 � Y(t)
z1 � z1

◆

r1

dt = 0

) �Y
a1

⇢

(a1 � m1)
Z q1

q10

r1(z1 � At + B)r1�1

(z1 � z1)
r1

dt + b1

Z q1

q10

r1(z1 � At + B)r1�1

(z1 � z1)
r1

tdt
�

+
Z q1

q10

✓

z1 � At + B
z1 � z1

◆

r1

dt = 0.

We can evaluate each term separately as follows:

First Term:

r1

Z q1

q10

(z1 � At + B)r1�1dt = � 1
A

Z q1

q10

{(z1 � At + B)r1}0
dt = � 1

A
(z1 � At + B)

�

�

�

q1

q10

=
n

r1
2 � n

r1
1

A
,
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where n1 = z1 � Aq1 + B and n2 = z1 � Aq10 + B.

Second Term:
Z q1

q10

r1(z1 � At + B)r1�1tdt = � 1
A

Z q1

q10

{(z1 � At + B)r1}0
tdt

= � 1
A



q1n

r1
1 � q10n

r1
2 �

Z q1

q10

(z1 � At + B)r1dt
�

.

Let z1 � At + B = x, then we can rewrite the last expression in the parenthesis as

� 1
A

Z

n1

n2

xr1dx = �n

1+r1
1 � n

1+r1
2

A(1 + r1)
,

which when substituted back to the previous expression allows us to write the

second term as
Z q1

q10

r1(z1 � At + B)r1�1tdt =
q10n

r1
2 � q1n

r1
1

A
� n

1+r1
1 � n

1+r1
2

A2(1 + r1)
.

Third term:
Z q1

q10

(z1 � At + B)r1 dt = �n

1+r1
1 � n

1+r1
2

A(1 + r1)
.

Putting together the FOC becomes

�Y
a1(a1 � m1)(n

r1
2 � n

r1
1 )

A
� Y

a1 b1(q10n

r1
2 � q1n

r1
1 )

A
+

Y
a1 b1(n

1+r1
1 � n

1+r1
2 )

A2(1 + r1)
� n

1+r1
1 � n

1+r1
2

A(1 + r1)
= 0

) �Y
a1(a1 � m1)(n

r1
2 � n

r1
1 )� Y

a1 b1(q10n

r1
2 � q1n

r1
1 )�

✓

Y
a1 b1

A
� 1
◆

(n(1+r1)
2 � n

(1+r1)
1 )

(1 + r1)
= 0.

We can write Y
b1(t) = Jt + D after some straightforward calculation and substitu-

tion, as shown later. Let z01 = z1
∂b1

and similarly we define z01, and let 4z0 = z01 � z01.

Some preliminary calculations:

Y
a1 =

∂Y(t)
∂a1

= � c2(l2 � 1)
(b2l2(b1+b1)�2c2(l2�1))

(b1+b1)
(b1 + b1)

� 1 =
�c2(l2 � 1)� b2l2(b1 + b1) + 2c2(l2 � 1)

(b2l2(b1 + b1)� 2c2(l2 � 1))

=
c2(l2 � 1)� b2l2(b1 + b1)

(b2l2(b1 + b1)� 2c2(l2 � 1))
.

Since n1 is just the first order condition for z1 where the type z1 purchases the op-

timal quantity, a necessary condition for optimality is that it must be equal to zero.

Therefore, in what follows we shall substitute n1 = 0. So, the first order condition
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with respect to a1 becomes

Y
a1(a1 � m1)n

r1
2 + Y

a1 b1q10n

r1
2 +

✓

Y
a1 b1

A
� 1
◆

(n(1+r1)
2 )

(1 + r1)
= 0

or, Y
a1(a1 � m1) + Y

a1 b1q10 +

✓

Y
a1 b1

A
� 1
◆

n2

(1 + r1)
= 0.

Next, we solve n2 to get

n2 = z1 � Aq10 + M1 + M2a1,

where M1 and M2 are determined by B, as shown below:

B =
(ca2 + c2q20)(b1 + b1)

b2l2(b1 + b1)� 2c2(l2 � 1)
+ a1

=
c(z2 + l2m2)(b1 + b1) + c(ca1 + c2q20)(l2 � 1) + c2q20(b1 + b1)

b2l2(b1 + b1)� 2c2(l2 � 1)
+ a1

=
c(z2 + l2m2)(b1 + b1) + c3q20(l2 � 1) + c2q20(b1 + b1)

b2l2(b1 + b1)� 2c2(l2 � 1)
+ a1

⇢

1 +
c2(l2 � 1)

b2l2(b1 + b1)� 2c2(l2 � 1)

�

=
c(z2 + l2m2)(b1 + b1) + c3q20(l2 � 1) + c2q20(b1 + b1)

b2l2(b1 + b1)� 2c2(l2 � 1)
+ a1

⇢

b2l2(b1 + b1)� c2(l2 � 1)
b2l2(b1 + b1)� 2c2(l2 � 1)

�

= M1 + M2a1.

Substituting everything in the FOC we get

Y
a1(a1 � m1) + Y

a1 b1q10 +

✓

Y
a1 b1

A
� 1
◆

z1 � Aq10 + M1 + M2a1

(1 + r1)
= 0

or, a1

⇢

Y
a1 +

✓

Y
a1 b1

A
� 1
◆

M2

(1 + r1)

�

+ Y
a1(b1q10 � m1) +

✓

Y
a1 b1

A
� 1
◆

z1 � Aq10 + M1

(1 + r1)
= 0,

and solving for a1, we get

a1 =
AY

a1(1 + r1)(m1 � b1q10) + (A � Y
a1 b1)(z1 � Aq10 + M1)

{Y
a1 A(1 + r1) + M2(Ya1 b1 � A)}

which is equation (A.6). To determine optimal b1 we optimize with respect to b1:

(1 � G1(Y(q1)))
| {z }

=0

(a1 + b1q1 � m1)
∂q1
∂b1

+
1

(z1 � z1)
r1

Z q

q10

n

r1(z1 � Y(t))r1�1(z01 � Y
b1)(a1 + b1t � m1)

+(z1 � Y(t))r1 t
o

dt �
Z q1

q10

r1 4 z01
(z1 � z1)

r1+1 (a1 + b1t � m1)(z1 � At + B)r1dt = 0
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We can express Y(t)
b1 as an explicit function of t:

Y(t)
b1 =

∂Y(t)
∂b1

=
2c2l2 � 2b2l2(b1 + b1)� 2c2l2

2b2(b1 + b1)� b2
2l2

2(b1 + b1)2

b2l2(b1 + b1)� 2c2(l2 � 1)
t

+
{c(z2 + l2m2) + c2q20}(b1 + b1)b2l2 � b2l2c(ca1 + c2q20)(l2 � 1)� c(z2 + l2m2)� c2q20

b2l2(b1 + b1)� 2c2(l2 � 1)
= Jt + D.

Taking 1
(z1�z1)

r1 common from the first order condition, we get

Z q

q10

n

r1(z1 � At + B)r1�1(z01 � Jt � D)(a1 + b1t � m1) + (z1 � At + B)r1 t
o

dt

�
Z q1

q10

r1 4 z01
(z1 � z1)

(a1 + b1t � m1)(z1 � At + B)r1dt = 0

or,
Z q

q10

r1(z1 � At + B)r1�1(z01 � D)(a1 � m1)� r1(z1 � At + B)r1�1 J(a1 � m1)t

+r1(z1 � At + B)r1�1(z01 � D)b1t � r1(z1 � At + B)r1�1 Jb1t2 + (z1 � At + B)r1 tdt

�
Z q1

q10

r1 4 z01
(z1 � z1)

(a1 + b1t � m1)(z1 � At + B)r1dt = 0

or, (z01 � D)(a1 � m1)
Z q

q10

r1(z1 � At + B)r1�1dt � J(a1 � m1)
Z q1

q10

r1(z1 � At + B)r1�1tdt

+(z01 � D)b1

Z q1

q10

r1(z1 � At + B)r1�1dt � Jb1

Z q1

q10

r1(z1 � At + B)r1�1t2dt

+
Z q1

q10

(z1 � At + B)r1 tdt �
Z q1

q10

r1 4 z01
(z1 � z1)

(a1 + b1t � m1)(z1 � At + B)r1dt = 0

or, (z01 � D)(a1 � m1)
Z q

q10

r1(z1 � At + B)r1�1dt � (J(a1 � m1)� (z01 � D)b1)

⇥
Z q1

q10

r1(z1 � At + B)r1�1tdt � Jb1

Z q1

q10

r1(z1 � At + B)r1�1t2dt

+
Z q1

q10

(z1 � At + B)r1 tdt �
Z q1

q10

r1 4 z01
(z1 � z1)

(a1 + b1t � m1)(z1 � At + B)r1dt = 0

Now, ignoring the coefficients, we solve the integration. First Term:

Z q

q10

r1(z1 � At + B)r1�1dt = � 1
A

Z q

q10

{(z1 � At + B)r1}0dt =
n

r1
2 � n

r1
1

A
.
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Second Term:
Z q1

q10

r1(z1 � At + B)r1�1tdt = � 1
A

Z q1

q10

t{(z1 � At + B)r1}0dt

= � 1
A



q1n

r1
1 � q10n

r1
2 �

Z q1

q10

(z1 � At + B)r1dt
�

=
q10n

r1
2 � q1n

r1
1

A
+

1
A

Z q1

q10

(z1 � At + B)r1dt

=
q10n

r1
2 � q1n

r1
1

A
+

n

1+r1
2 � n

1+r1
1

A2(1 + r1)
.

Third Term
Z q1

q10

r1(z1 � At + B)r1�1t2dt = � 1
A

Z q1

q10

t2{(z1 � At + B)r1}0dt

= � 1
A



q2
1n

r1
1 � q2

10n

r1
2 � 2

Z q1

q10

t(z1 � At + B)r1dt
�

=
q2

10n

r1
2 � q2

1n

r1
1

A
+

2
A

Z q1

q10

t(z1 � At + B)r1dt.

Let (z1 � At + B)r1 = x, then dt = � x
1

r1
�1

Ar1
dx, which allows us to solve the integra-

tion in the last expression:

Z q1

q10

t(z1 � At + B)r1dt =
Z

n

r1
1

n

r1
2

x
(z1 + B)� x

1
r1

A

 

� x
1

r1
�1

Ar1

!

dx

= � (z1 + B)
A2

r1

Z

n

r1
1

n

r1
2

x
1

r1 dx +
1

A2
r1

Z

n

r1
1

n

r1
2

x
2

r1 dx = �
(z1 + B)

⇣

{n

r1
1 }1+ 1

r1 � {n

r1
2 }1+ 1

r1

⌘

A2
r1(1 + 1

r1
)

+
{n

r1
1 }1+ 2

r1 � {n

r1
2 }1+ 2

r1

A2
r1(

2
r1
+ 1)

= �
(z1 + B)

⇣

n

1+r1
1 � n

1+r1
2

⌘

A2(1 + r1)
+

n

2+r1
1 � n

2+r1
2

A2(2 + r1)

Therefore, the third term becomes

Z q1

q10

r1(z1 � At + B)r1�1t2dt =
q2

10n

r1
2 � q2

1n

r1
1

A
�

2(z1 + B)
⇣

n

1+r1
1 � n

1+r1
2

⌘

A3(1 + r1)
+

2(n2+r1
1 � n

2+r1
2 )

A3(2 + r1)

Fourth term: (following the derivation for the third term)

Z q1

q10

(z1 � At + B)r1 tdt =
(z1 + B)(n1+r1

2 � n

1+r1
1 )

A2(1 + r1)
+

n

2+r1
1 � n

2+r1
2

A2(2 + r1)
.
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The Fifth Term:
Z q1

q10

r1 4 z01
(z1 � z1)

(a1 + b1t � m1)(z1 � At + B)r1dt =
Z q1

q10

n

r1 4 z01(a1 � m1)(z1 � At + B)r1

(z1 � z1)

+
r1 4 z01b1(z1 � At + B)r1 t

(z1 � z1)

o

dt =
4z01(a1 � m1)

(z1 � z1)

Z q1

q10

r1(z1 � At + B)r1dt

+
r1 4 z01b1

(z1 � z1)

Z q1

q10

(z1 � At + B)r1 tdt

=
4z01r1(a1 � m1)(n

1+r1
2 � n

1+r1
1 )

A(z1 � z1)(1 + r1)
� 4z01r1b1(z1 + B)(n1+r1

1 � n

1+r1
2 )

A2(z1 � z1)(1 + r1)
+

4z01r1b1(n
2+r1
1 � n

2+r1
2 )

A2(z1 � z1)(2 + r1)

Now, putting all the terms together we get the following first order condition for

b1:

(z01 � D)(a1 � m1)(n
r1
2 � n

r1
1 )

A
� {J(a1 � m1)� (z01 � D)b1}

(

q10n

r1
2 � q1n

r1
1

A
+

n

1+r1
2 � n

1+r1
1

A2(1 + r1)

)

�Jb1

8

<

:

q2
10n

r1
2 � q2

1n

r1
1

A
�

2(z1 + B)
⇣

n

1+r1
1 � n

1+r1
2

⌘

A3(1 + r1)
+

2(n2+r1
1 � n

2+r1
2 )

A3(2 + r1)

9

=

;

+

(

(z1 + B)(n1+r1
2 � n

1+r1
1 )

A2(1 + r1)
+

n

2+r1
1 � n

2+r1
2

A2(2 + r1)

)

�
(

4z01r1(a1 � m1)(n
1+r1
2 � n

1+r1
1 )

A(z1 � z1)(1 + r1)

�4z01r1b1(z1 + B)(n1+r1
1 � n

1+r1
2 )

A2(z1 � z1)(1 + r1)
+

4z01r1b1(n
2+r1
1 � n

2+r1
2 )

A2(z1 � z1)(2 + r1)

)

= 0.

Taking 1
A common and re arranging the terms gives us

(z01 � D)(a1 � m1)(n
r1
2 � n

r1
1 )� {J(a1 � m1)� (z01 � D)b1}(q10n

r1
2 � q1n

r1
1 )

+

⇢

z1 + B
A

� {J(a1 � m1)� (z01 � D)b1}
A

� 2Jb1(z1 + B)
A2 +

4z01r1{b1(z1 + B)� A(a1 � m1)}
A(z1 � z1)

�

⇥
 

n

1+r1
2 � n

1+r1
1

(1 + r1)

!

� Jb1(q2
10n

r1
2 � q2

1n

r1
1 )�

✓4z01r1b1

z1 � z1
+ 2Jb1 � 1

◆

 

n

2+r1
1 � n

2+r1
2

A2(2 + r1)

!

= 0.

Then when we substitute n1 = 0, and taking n

r1
2 ( 6= 0) common, we get

(z01 � D)(a1 � m1)� q10{J(a1 � m1)� (z01 � D)b1}

+

⇢

z1 + B
A

� {J(a1 � m1)� (z01 � D)b1}
A

� 2Jb1(z1 + B)
A2 +

4z01r1{b1(z1 + B)� A(a1 � m1)}
A(z1 � z1)

�

⇥ n2

(1 + r1)
� Jb1q2

10 +

✓4z01r1b1

z1 � z1
+ 2Jb1 � 1

◆

n

2
2

A2(2 + r1)
= 0.,
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⇤

Lemma 3. In equilibrium the fixed price of purchasing advertisements from each publishers
is g1 and g2, which are respectively given by

g1 =
(q⇤1 � a1)

2(b2 + b2)

b1 + b1
+

c(q⇤1 � a1)(q2 � a2)(3 � (b1 + b1))

(b1 + b1)(b2 + b2)� c2 +
(q2 � a2)2(b1 + b1)

(b1 + b1)(b2 + b2)� c2 � (q⇤1 � a1)
2

2(b1 + b1)

� c2(q⇤1 � a1)
2

(b1 + b1)(b2 + b2)� c2 ⇥
✓

1 � 1
b1 + b1

◆

+
1
2

 

(q2 � a2)(b1 + b1) + c(q⇤1 � a1)

(b1 + b1)(b2 + b2)� c2

!2

(1 � (b2 + b2))

�q

⇤
1 q10 +

b1
2

q2
10 +

(q2 � a2 + cq10)
2

2(b2 + b2)

g2 =

(

(q1 � a1)
3(q1 � a1)(b2 + b2)(b1 + b1) + c(b1 + b1)[2(q⇤2 � a2) + (b2 + b2)q20]� c2(q1 � a1)� c3q20

2(b1 + b1)(b2 + b2)� 2c2

)

"

c(q⇤2 � a2)

(b1 + b1)(b2 + b2)
+

c2(q1 � a1)(b2 + b2) + c2(q⇤2 � a2)

(b1 + b1)(b2 + b2){(b1 + b1)(b2 + b2)� c2} � cq20
b1 + b1

#

+ (q⇤2 � a2)

"

q

⇤
2 � a2

b2 + b2
+

c(q1 � a1)(b2 + b2) + c2(q⇤2 � a2)

(b2 + b2){(b1 + b1)(b2 + b2)� c2}

#

� q

⇤
2 q20 � b2 + b2

2



q

⇤
2 � a2

b2 + b2

+
c(q1 � a1)(b2 + b2) + c2(q⇤2 � a2)

(b2 + b2){(b1 + b1)(b2 + b2)� c2}

#2

+
b2
2

q2
20 + c

"

q

⇤
2 � a2

b2 + b2
+

c(q1 � a1)(b2 + b2) + c2(q⇤2 � a2)

(b2 + b2){(b1 + b1)(b2 + b2)� c2}

#

"

(q1 � a1)(b2 + b2) + c(q⇤2 � a2)

(b1 + b1)(b2 + b2)� c2

#

� c(q1 � a1 + cq20)q20
b1 + b1

+ (z2 + m2)q20

+
1
2

✓

b2(2l2 � 1)� 2c2(l2 � 1)
b1 + b1

◆

q2
20

Proof. The lowest type for P1 amongst all those who buy at least q10, is (q⇤1 , q2).

Recall the definition of q

⇤
1 from previous section. Let w2(q2(q⇤1 , q2); q

⇤
1 , q2) be the

utility that the type (q⇤1 , q2) gets by consuming optimal q2 and only q10. Notice that

given the type in other dimension, the agent will always have interior solution for

q2. Then if we recall W1(q⇤1 , q2; x) to be the indirect utility of consuming optimal pair

of (q1, q2) when P1 charges g1 = x, then the difference between the two W1(·, ·; x)�
w2(·; ·, ·) is the extra utility from participating in contract with P1. Since this type is

the least favorable one from the perspective of P1, optimal g1 should be such that

it takes away all the extra utility for such type that accrues from participating with

P1. Therefore we get

g2 = arg min
x

{W1(q
⇤
1 , q2; x)� w2(q2(q

⇤
1 , q2); q

⇤
1 , q2)}.



12 G. ARYAL

When only q10 is consumed then the first order condition gives us that the optimal

q2(q⇤; q10) =
q2�a2+cq10

b2+b2
, where q

⇤ is the type pair we are concerned with. Therefore,

w2(q2(q
⇤; q10); q

⇤) = q

⇤
1 q10 + (q2 � a2 + cq10)

 

q2 � a2 + cq10

b2 + b2

!

� (b1 + b2)
2

 

q2 � a2 + cq10

b2 + b2

!2

�b1

2
q2

10 � g2

= q

⇤
1 q10 � b1

2
q2

10 � g2 +
(q2 � a2 + cq10)2

2(b2 + b2)

However, without any such restrictions, optimal consumption pairs are

q2(q
⇤) =

q2 � a2 + cq1(q⇤)
b2 + b2

; q1(q
⇤) =

q

⇤
1 � a1 + cq2(q⇤)

b1 + b1
,

which when solved simultaneously, gives us

q2(q
⇤) =

(q2 � a2)(b1 + b1) + c(q⇤1 � a1)

(b1 + b1)(b2 + b2)� c2

q1(q
⇤) =

q

⇤
1 � a1

b1 + b1
+

c
b1 + b1

"

(q2 � a2)(b1 + b1) + c(q⇤1 � a1)

(b1 + b1)(b2 + b2)� c2

#

.

Observe that we intend to minimize the difference between W1 and w2 by choosing

x, which appears linearly only in W1 we can choose the g1 such that ignoring x in

W1 g1 = W1 � w2. To get W1 we substitute all the expression back into the indirect
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utility function to get:

g1 = (q⇤1 � a1)q1(q
⇤) + (q2 � a2)q2(q

⇤)� b1 + b1

q 1
(q⇤)2 � b2 + b2

2
q2(q

⇤)2

�g2 + cq1(q
⇤)q2(q

⇤)� q

⇤
1 q10 +

b1

2
q2

10 + g2 � (q2 � a2 + cq10)2

2(b2 + b2)

=
(q⇤1 � a1)2

b1 + b1
+

c(q⇤1 � a1)(q2 � a2)

(b1 + b1)(b2 + b2)� c2 +
c2(q⇤1 � a1)2

(b1 + b1){(b1 + b1)(b2 + b2)� c2}

+
(q2 � a2)2(b1 + b1)

(b1 + b1)(b2 + b2)� c2 +
c(q2 � a2)(q⇤1 � a1)

(b1 + b1)(b2 + b2)� c2 � b1 + b1

2

"

✓

q

⇤
1 � a1

b1 + b1

◆2

+
2c(q⇤1 � a1)

b1 + b1

(q2 � a2)(b1 + b1) + c(q⇤1 � a1)

(b1 + b1)(b2 + b2)� c2 +
c2

(b1 + b1)2

 

(q2 � a2)(b1 + b1) + c(q⇤1 � a1)

(b1 + b1)(b2 + b2)� c2

!2 #

�b2 + b2

2

 

(q2 � a2)(b1 + b1) + c(q⇤1 � a1)

(b1 + b1)(b2 + b2)� c2

!2

+
c(q⇤1 � a1)

b1 + b1

(q2 � a2)(b1 + b1) + c(q⇤1 � a1)

(b1 + b1)(b2 + b2)� c2

c2

b1 + b1

 

(q2 � a2)(b1 + b1) + c(q⇤1 � a1)

(b1 + b1)(b2 + b2)� c2

!2

� q

⇤
1 q10 +

b1

2
q2

10 +
(q2 � a2 + cq10)2

2(b2 + b2)

g1 =
(q⇤1 � a1)2(b2 + b2)

b1 + b1
+

3c(q⇤1 � a1)(q2 � a2)

(b1 + b1)(b2 + b2)� c2 +
(q2 � a2)2(b1 + b1)

(b1 + b1)(b2 + b2)� c2 � (q⇤1 � a1)2

2(b1 + b1)

� c(q⇤1 � a1)(q2 � a2)(b1 + b1)

(b1 + b1)(b2 + b2)� c2 � c2(q⇤1 � a1)2

(b1 + b1)(b2 + b2)� c2

✓

1 � 1
b1 + b1

◆

+
1
2

 

(q2 � a2)(b1 + b1) + c(q⇤1 � a1)

(b1 + b1)(b2 + b2)� c2

!2

(1 � (b2 + b2))� q

⇤
1 q10 +

b1

2
q2

10 +
(q2 � a2 + cq10)2

2(b2 + b2)

=
(q⇤1 � a1)2(b2 + b2)

b1 + b1
+

c(q⇤1 � a1)(q2 � a2)(3 � (b1 + b1))

(b1 + b1)(b2 + b2)� c2 +
(q2 � a2)2(b1 + b1)

(b1 + b1)(b2 + b2)� c2

� (q⇤1 � a1)2

2(b1 + b1)
� c2(q⇤1 � a1)2

(b1 + b1)(b2 + b2)� c2

✓

1 � 1
b1 + b1

◆

+
1
2

 

(q2 � a2)(b1 + b1) + c(q⇤1 � a1)

(b1 + b1)(b2 + b2)� c2

!2

(1 � (b2 + b2))� q

⇤
1 q10 +

b1

2
q2

10 +
(q2 � a2 + cq10)2

2(b2 + b2)

Now, we shall find the optimal g2. From the characterization of the threshold q

⇤
2 , we

know that an agents with type pair (q1, q

⇤
2 ) are least prepared to buy more than q20

from Principal 2. Hence, g2, can be at most the infra gain in utility from consuming

the optimal pair from both the principals and consuming only q20 from P2. If we let
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w1(q1(q1, q

⇤
2 ); q1, q

⇤
2 ) to be the utility that this agent gets when he consumes optimal

q1 -which could be greater or equal to q10- and only q20, and W2(q1, q2; q1, q

⇤
2 ) to be

the utility when he consumes optimal amount of both q1 and q2. Then the opti-

mal fixed cost of purchasing q2 > q20, g2 must take away this rent, hence, hence

s(·)(g2)� w2(·) = 0, so

g2 = W2(·)� w1(·).

Since

w1(q1(q1, q

⇤
2 ); q1, q

⇤
2 ) = max

q̂1
u(q̂1, q20; q1, q

⇤
2 )� g1 � a1q̂1 � b1

2
q̂2

1.

the optimal q1 is given by the first order necessary condition, and is

q1 =
q1 � a1 + cq20

b1 + b1
.

Hence,

w1(q1(q1, q

⇤⇤
2 ); q1, q

⇤
2 ) = (q1 � a1)

q1 � a1 + cq20

b1 + b1
+ q

⇤
2 q20 � b1 + b1

2

 

q1 � a1 + cq20

b1 + b1

!2

�b2

2
q2

20 + cq20
q1 � a1 + cq20

b1 + b1
� g1 � b1

2
q̂2

1

=
(q1 � a1)2

b1 + b1
+

 

2c(q1 � a1)
b1 + b1

+ q

⇤
2

!

q20 �
�

q1 � a1 + cq20
�2

2(b1 + b1)

+

✓

c2

b1 + b1
� b2

2

◆

q2
20 � g1.

Now, to find s2(·) we start from the demand for q1 and q2 derived from the usual

first order necessary condition of optimization, where

W2(q1, q2; q1, q

⇤
2 ) = max

q̂1,q̂2



u(q̂1, q̂2; q1, q

⇤
2 )� g1 � a1q̂1 � b1

2
q̂2

1 � a2q̂2 � b2

2
q̂2

2

�

.



NOTE: COMPETITIVE NLP 15

which gives2

q1 =
q1 � a1 + cq2

b1 + b1
; q2 =

q

⇤
2 � a2 + cq1

b2 + b2

q1(q20) =
q1 � a1 + cq20

b1 + b1

If we simultaneously solve these two equations we get the following final demand

as a function of pricing rule, and using q

⇤⇤ = (q2, q

⇤
2 ):

q2(q
⇤⇤) =

q

⇤
2 � a2

b2 + b2
+

c(q1 � a1)(b2 + b2) + c2(q⇤2 � a2)
(b2 + b2){(b1 + b1)(b2 + b2)� c2}

q1(q
⇤⇤) =

(q1 � a1)(b2 + b2) + c(q⇤2 � a2)
(b1 + b1)(b2 + b2)� c2

ˆ̂
g2 = (q1 � a1)q1(q

⇤⇤) + (q⇤2 � a2)q2 � b1 + b1

2
q1(q

⇤⇤)2 � b2 + b2

2
q2(q

⇤⇤)2 + cq1(q
⇤⇤)q2(q

⇤⇤)

�g1 � (q1 � a1)q1(q20)� q

⇤
2 q20 +

b1 + b1

2
q1(q20)

2 +
b2

2
q2

20 � cq1(q20)q20 + g1

= (q1 � a1)(q1(q
⇤⇤)� q1(q20)) + (q⇤2 � a2)q2(q

⇤⇤)� q

⇤
2 q20 � b1 + b1

2
(q1(q

⇤⇤)2 � q1(q20)
2)

�b2 + b2

2
q2(q

⇤⇤)2 +
b2

2
q2

20 + c(q1(q
⇤⇤)q2(q

⇤⇤)� q1(q20)q20)

=

⇢

(q1 � a1)� b1 + b1

2
(q1(q

⇤⇤) + q1(q20))

�

(q1(q
⇤⇤)� q1(q20)) + (q⇤2 � a2) q2(q

⇤⇤)� q

⇤
2 q20

�b2 + b2

2
q2(q

⇤⇤)2 +
b2

2
q2

20 + c{q1(q
⇤⇤)q2(q

⇤⇤)� q1(q20)q20}

And since g2 = ˆ̂
g2 � ĝ2, we get

g2 =

⇢

(q1 � a1)� b1 + b1

2
(q1(q

⇤⇤) + q1(q20))

�

(q1(q
⇤⇤)� q1(q20)) + (q⇤2 � a2) q2(q

⇤⇤)� q

⇤
2 q20

�b2 + b2

2
q2(q

⇤⇤)2 +
b2

2
q2

20 + c{q1(q
⇤⇤)q2(q

⇤⇤)� q1(q20)q20}+ (z2 + m2)q20

+
1
2

✓

b2(2l2 � 1)� 2c2(l2 � 1)
b1 + b1

◆

q2
20

2Note that while writing s2(·) we have ignored g2, as it is automatically taken care of in the
definition of optimal g2.
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Some calculation yields the following:

q1(q
⇤⇤)� q1(q20) =

c(q2(q⇤⇤)� q20)
b1 + b1

=

"

(̧q⇤2 � a2)
(b1 + b1)(b2 + b2)

+
c2(q1 � a1)(b2 + b2) + c2(q⇤2 � a2)

(b1 + b1)(b2 + b2){(b1 + b1)(b2 + b2)� c2} � cq20

b1 + b1

#

b1 + b1

2
(q1(q

⇤⇤) + q1(q20)) =

3(q1 � a1)(b2 + b2)(b1 + b1) + c(b1 + b1)[2(q⇤2 � a2) + (b2 + b2)q20]� c2(q1 � a1)� c3q20

2(b1 + b1)(b2 + b2)� 2c2

q1(q
⇤⇤)q2(q

⇤⇤)� q1(q20)q20 =

"

q

⇤
2 � a2

b2 + b2
+

c(q1 � a1)(b2 + b2) + c2(q⇤2 � a2)
(b2 + b2){(b1 + b1)(b2 + b2)� c2}

#

⇥
"

(q1 � a1)(b2 + b2) + c(q⇤2 � a2)
(b1 + b1)(b2 + b2)� c2

#

� (q1 � a1 + cq20)q20

b1 + b1

g2 =

(

(q1 � a1)

3(q1 � a1)(b2 + b2)(b1 + b1) + c(b1 + b1)[2(q⇤2 � a2) + (b2 + b2)q20]� c2(q1 � a1)� c3q20

2(b1 + b1)(b2 + b2)� 2c2

)

⇥
"

(̧q⇤2 � a2)
(b1 + b1)(b2 + b2)

+
c2(q1 � a1)(b2 + b2) + c2(q⇤2 � a2)

(b1 + b1)(b2 + b2){(b1 + b1)(b2 + b2)� c2} � cq20

b1 + b1

#

+ (q⇤2 � a2)

"

q

⇤
2 � a2

b2 + b2
+

c(q1 � a1)(b2 + b2) + c2(q⇤2 � a2)
(b2 + b2){(b1 + b1)(b2 + b2)� c2}

#

� q

⇤
2 q20

�b2 + b2

2

"

q

⇤
2 � a2

b2 + b2
+

c(q1 � a1)(b2 + b2) + c2(q⇤2 � a2)
(b2 + b2){(b1 + b1)(b2 + b2)� c2}

#2

+
b2

2
q2

20

+c

"

q

⇤
2 � a2

b2 + b2
+

c(q1 � a1)(b2 + b2) + c2(q⇤2 � a2)
(b2 + b2){(b1 + b1)(b2 + b2)� c2}

#"

(q1 � a1)(b2 + b2) + c(q⇤2 � a2)
(b1 + b1)(b2 + b2)� c2

#

� c(q1 � a1 + cq20)q20

b1 + b1
+ (z2 + m2)q20 +

1
2

✓

b2(2l2 � 1)� 2c2(l2 � 1)
b1 + b1

◆

q2
20.

⇤
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2. OPTIMAL ALLOCATION RULE

In this section we characterize the optimal nonlinear pricing that does not use

the “aggregation method,” but uses the multidimensional screening method as in

[Rochet and Choné, 1998] and generalized by [Basov, 2001]. In our case, each pub-

lisher can sell one type of advertisement (qi 2 R+) but agents have two types

(q 2 R2) ⇠ F(·, ·) so perfect screening is not possible, so we use the generaliza-

tion in [Basov, 2001].3 The preferences of an agent of type (q) is: u(q1, q2; q) =

q1q1 + q2q2 � b1
2 q2

1 � b2
2 q2

2 + cq1q2. The first publihser offers quadratic tariff function

and is given by

T1(q1) =

8

<

:

g1 + a1q1 +
b1
2 q2

1 ifq > q10

0 ifq  q10
(5)

Let the indirect utility of agent with type (q) be W(q) and is defined as

W(q) = u(q1(q), q2(q); q)� T1(q1(q))� T2(q2(q)),

where qi(q) is the optimal quantity of good i purchased by agent of type q. Suppose,

an agent decides to buy only from P1, some optimal quantity while consuming q20

for free from P2, then let’s denote his indirect utility to be w1(q), which is defined

as

w1(q) = max
q̃1�q10



q1q̃1 + q2q20 � b1

2
q̃2

1 �
b2

2
q2

20 + cq̃1q20 � g1 � a1q̃1 � 1
2

b1q̃2
1

�

.

After determining the optimal q1(q) via the FOC, and substituting back, w1(q) can

be written as

w1(q) = �g1 +
(q1 � a1)2

2(b1 + b1)
+

✓

c(q1 � a1)
b1 + b1

+ q2

◆

q20 +

✓

c2

2(b1 + b1)
� b2

2

◆

q2
20.

(6)

If an agent of type q buys q2 > q20, from P2 and optimal q1(q) from P1, then his/her

(indirect)utility is W(q). Whereas, if he/she buys only q20 from P2, then it is w1(q).

This means the difference in the utility from deciding to buy q2 > q20 from P2 is

just the difference between W(q) and w1(q). With some calculation it can be shown

3Whenever possible, we shall use q to denote a vector of (q1, q2).
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that W(q) = w1(q) + s(q2, q), where s(q2, q) is the residual utility that an agent gets

by consuming optimal amount of q2 and is

s(q2(q), q) = max
q̃2�q20

✓

q2 +
c(q1 � a1 + cq2)

b1 + b1

◆

(q2 � q20)� b2

2
(q2

2 � q2
20)� T2(q2)

�

.

Therefore, for P2, an agent with type q can be thought of as having s(q2, q) as the

utility function. From earlier assumptions we know that s(q2(q), q) satisfies enve-

lope conditions:

s2(q2(q), q) =
∂s(q2(q), q)

∂q2
= v2(q2(q)) = (q2(q)� q20)

s1(q2(q), q) =
∂s(q2(q), q)

∂q1
= v1(q2(q)) =

c(q2(q)� q20)
b1 + b1

.

We denote q2 � q10 = q̃2 and write the tariff as a function of the information rent

(indirect residual utility) as

T2(q) = q2q̃2 +
c(q1 � a1)q̃2

b1 + b1
+

c2(q̃2 + q20)q̃2

b1 + b1
� b2

2
(q̃2

2 + 2q20(q̃2 + q20))� s(q).

Then the expected profit of P2, with Q⇤ ⇢ Q being those who buy more than q20,

can be written as

E(P2) =
Z

Q⇤

h

✓

q2 +
c(q1 � a1)

b1 + b1

◆

q̃2 +

✓

c2q̃2

b1 + b1
� b2q20

◆

(q̃2 + q20)� b2

2
q̃2

2

�m2q̃2 � m2q20 � s(q)
i

f (q)dq � m2q20F(q⇤)� K2.

The optimal quantity and pricing rule will maximize the expected profit condi-

tional on the fact that the agents will choose their quantity appropriately and that

every body wants to participate. Before we move on, let’s look into the issue of par-

ticipation in detail. First, from the perspective of P2, s(q2, q) is the additional utility

that an agent q gets from consuming q2, while his total utility is his indirect utility

W(q). Also, recall that if the agent chooses not to consume more than q20 from P2,

then he gets w1(q) if he consumes some amount from P1 or he gets u(q10, q20, q) if he

consumes the free quantity. Therefore, an agent will participate in the contract with

P2 if and only if the gain from participating is at least as much as not participating
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at all. In other words, the participation constraint is: for all q 2 Q,

W(q) � max{w1(q), u(q10, q20, q)}
) w1(q) + s(q(q), q) � max{w1(q), u(q10, q20, q)}
) w1(q) + s(q(q), q) � w1(q)

) s(q(q), q) � 0.

The third inequality follows from the fact that w1(q) is the utility that results when

the agent finds it optimal to purchase q1 > q10 while he purchases only q20. There-

fore, the utility q1(q) has to be at least as much as u(q10, q20, q). Then P2’s objec-

tive function is to choose optimal rent that is given to an agent of type q, with the

constraints that the rent so induced is implementable and satisfies participation

constraints. Following the literature on implementability, the sufficient condition

for implementability is that the rent function has to be convex when evaluated at

optimal consumption and the participation constraint must be satisfied. So the op-

timization problem of P2 is maxs E(P1) such that s(·) is convex; and s(q) � 0.

Let, p1 = v1(q) = c
b1+b1

q̃2 and p2 = v2(q) = q̃2. Since the dimension of type is

more than the dimension of goods, for P2, not all points in the utils space will be

feasible. The set of feasible points forms a smooth subset (1 dimensional manifold)

in R2
+. This subset can be characterized as :

A = {p 2 R2
+ : a(p1, p2) = 0},

for some function a : R2 ! R. Now, in terms of the newly introduced utils, P2’s

problem is

E(P2) =
ZZ

Q⇤

h 2

Â
i=1

qi pi +

✓

c2q20 � ca1

b1 + b1
� b2q20 � m2

◆

p2 +

✓

c2

b1 + b1
� b2

2

◆

p2
2 � s(q)

i

dF(q)

�(K2 + m2q20), (7)

s.t 5 s(q) = z, s(·)� convex, a(p1, p2) = 0. (8)

For existence and uniqueness results and the interpretation of the constraints see

[Basov, 2001]. First we drop the convexity assumption, and derive optimal contract
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for the “relaxed” problem. The Hamiltonian can for the problem becomes

H(p) =

"

2

Â
i=1

qi pi +

✓

c2q20 � ca1

b1 + b1
� b2q20 � m2

◆

h2 +

✓

c2

b1 + b1
� b2

2

◆

p2
2 � s(q)

#

f (q)

�(K2 + m2q20) +
2

Â
i=1

li(q)pi + µ(q)a(p1, p2),

where l is the costate vector for the envelope condition 5s(q) = p while µ is the

Lagrange multiplier on the constraint a(p1, p2) = 0. Let,
✓

c2q20 � ca1

b1 + b1
� b2q20 � m2

◆

= x,
✓

b2

2
� c2

b1 + b1

◆

= e.

then we can use a(z) = cp2
b1+b1

� p1 = 0 and re write H(z) as

H =

 

2

Â
i=1

qi pi + xp2 � ep2
2 � s

!

f (q)+
2

Â
i=1

li(q)pi +µ(q)

✓

cp2

b1 + b1
� p1

◆

� (K2 +m2q20).

Let n be the unit vector, normal to the boundary of participation and pointing out-

wards. Then from [Basov, 2001] we have

Theorem 2. Suppose that the rent function s(q) solves the relaxed problem. Then the

solution characterized by the following conditions: there exists a continuously differentiable

vector function l : R2 ! R2, and a continuously differentiable function µ : R2 ! R,

such that

divl +
∂H

∂s
 0; a.e.on Q⇤ (9)

< l, n > � 0; a.e.on ∂Q⇤. (10)

Inequalities (5) and (6) becomes equalities at interior of participation region Q⇤, i.e when-

ever s(q) > 0. For a given vector l, z is determined by

pi 2 arg max H. (11)

In the Hamiltonian, we should interpret the term eq̃2
2 � xq̃2 as the pseudo-cost of

producing q. And under the condition that b2 > 2c2

b1+b1
it can be shown that this cost

is strictly convex in q̃2. As this condition depends on the optimal pricing chosen

by P1, it is taken as parameter by P2, while choosing its own optimal contract. For

our purpose we shall assume that this inequality is true, and shall verify it ex post.
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This new pseudo-cost function makes our case directly comparable to the case in

Basov. From these three conditions we get

dl1

dq1
+

dl2

dq2
� f (q)  0; a.e. on Q, (12)

l1n1 + l2n2 � 0; a.e. on ∂Q, (13)
∂H

∂p1
= 0 ) l1 = µ(q)� q1 f (q) (14)

∂H

∂p2
= 0 ) l2 = �(q2 + x � 2ep2) f (q)� µ(q)c

b1 + b1

) l2 = �(q2 + x � 2es2(q)) f (q)� µ(q)c
b1 + b1

, (15)

where the last equality follows from the envelope condition, i.e. ∂s(q1,q2)
∂q2

= p2.

Differentiating (10) and (11) w.r.t q1 and q2, respectively, we get

dl1

dq1
= µ1(q)� f (q)� q1 f1(q),

dl2

dq2
= �(1 � 2es22(q)) f (q)� (q2 + x � 2es2(q)) f2(q)� µ2(q)c

b1 + b1
.

Here, for functions f (q) and µ(q) we use subscript to denote the partial derivative

with respect to that argument. Substituting each of the above expressions in (8)

gives us

µ1(q)� f (q)� q1 f1(q)� (1 � 2es22(q)) f (q)� (q2 + x � 2es2(q)) f2(q)� µ2(q)c
b1 + b1

� f (q)  0

) (2es22(q)� 3) f (q) + (2es2(q)� q2 � x) f2(q) + µ1(q)(q)� q1 f1(q)� µ2(q)c
b1 + b1

= 0 (16)

For the first part we shall focus only on substitute goods, i.e. c < 0. The inequality

(9), binds at the boundary where the agent values the good 2 the most, i.e at (q1, q2),

which, in the contract literature is known as no distortion on top. Hence,

µ(q1, q2)� q1 f1(q1, q2) = 0; (17)

�(q2 + x � 2es2(q1, q2)) f (q1, q2)� µ(q1, q2)c
b1 + b1

= 0. (18)
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From (13) we notice that the multiplier is a a function of q2 only through the density

function. Hence we conjecture that the multiplier is

µ(q) = q1 f (q).

Hence, µ1(q) = q1 f1(q) + f (q), which satisfies (13) and µ2(q) = q1 f2(q). Now for

notational ease we make a change of variable, y(q) = s1(q), from (13) we get

(2ey1(q)� 3) f (q) + (2ey(q)� q2 � x) f2(q) + q1 f1(q) + f (q)� q1 f1(q)� q1 f2(q)c
b1 + b1

= 0

2ey1(q) f (q) +
✓

2ey(q)� q1c
b1 + b1

� q2 � x
◆

f2(q)� 2 f (q) = 0;

) ∂

∂q2



2ey f (q)�
✓

cq1

b1 + b1
+ q2 + x

◆

f (q)
�

= f (q). (19)

Therefore, the optimal contract is characterized by the PDE (15) with the boundary

condition:

�
✓

q2 + x � cq1

b1 + b1

◆

f (q1, q2) + 2ey(q1, q2) f (q1, q2) = 0. (20)

Integrating both sides of (16), with respect to q2, we get

Z

q2

q2

∂

∂t



2ey(q1, t) f (q1, t)� (
cq1

b1 + b1
+ t + x) f (q1, t)

�

dt = k0 +
Z

q2

q2

f (q1, t)dt

or,
⇢

2ey(q1, q2) f (q1, q2)�
✓

cq1

b1 + b1
+ q2 + x

◆

f (q1, q2)

�

�
⇢

2ey(q1, q2) f (q1, q2)�
✓

cq1

b1 + b1
+ q2 + x

◆

f (q1, q2)

�

= k0 +
Z

q2

q2

f (q1, t)dt

or, �
⇢

2ey(q1, q2) f (q1, q2)�
✓

cq1

b1 + b1
+ q2 + x

◆

f (q1, q2)

�

= k0 +
Z

q2

q2

f (q1, t)dt

or, y(q1, q2) =

⇣

cq1
b1+b1

+ q2 + x
⌘

f (q1, q2)� k0 �
R

q2
q2

f (q1, t)dt

2e f (q1, q2)

or, q̃2(q1, q2) = p2 =
∂s(q1, q2)

∂q2
= y(q1, q2) =

⇣

cq1
b1+b1

+ q2 + x
⌘

f (q1, q2)� k0 �
R

q2
q2

f (q1, t)dt

2e f (q1, q2)
,
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where the third equality follows from the boundary condition (16), and evaluating

the above at q2 gives k0 = 0.. Therefore the optimal contract is

q(q1, q2) =

cq1
b1+b1

+ q2 � c2q20+ca1
b1+b1

� m2 �
R

q2
q2

f (q1,t)dt
f (q1,q2)

⇣

b2 � 2c2

b1+b1

⌘ , (21)

which is the same as we found using the aggregation method. The allocation rule

for the first principal can be determined analogously and hence not pursued. Note

that, unlike in [Rochet and Choné, 1998], optimal allocation rule never generates

perfect screening because of the difference in dimension of instrument and agent’s

type. Therefore, the agent’s type is divided into only two subsets, one where they

are screened out and offered only qi0, i = 1, 2 and the other is bunching of “second

kind” where agents with type hi = qi +
cqj

bj+b j
, j 6= i, i, j 2 {1, 2}, get the same good

qi(hi).
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ROCHET, J.-C., AND P. CHONÉ (1998): “Ironing, Sweeping, and Multidimensional

Screeing,” Econometrica, 66(4), 783–826. 1, 17, 23


