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Abstract
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1 Introduction

The enormous salaries earned by successful professional sports players frequently attract

attention in the media. However, it is also well-known that less successful players,

although highly paid relative to many other professionals, earn vastly less than the

star players. This is certainly the case in Major League Baseball (MLB). In 2011 Alex

Rodriguez was the highest paid player, earning $32,000,000, whilst many players in the

first few years of their careers earn the league minimum ($414,000 in 2011). A natural

question for economists is how this disparity in pay between players on a team affects the

players’ performances, and through them, team performance. Given a fixed wage bill, is

it better to have an entire team composed of players of roughly equal wages, or to have

one highly-paid star player and many less well-remunerated players? We assume below

that wages reflect ability, thus one could also ask this question in terms of ability–is it

better to have a team composed of players of equal ability or one star player and many

‘ordinary’ players? The focus of this paper is the impact of wage/ability disparity on

team performance in baseball, but it should be clear that the question is of interest to

labor economists in general.

There is an existing body of theoretical work considering the implications of wage

disparity on productivity generally, as well as empirical work looking at the impact

of inequality in wages on performance in sport. The theoretical literature is divided;

Akerlof and Yellen (1991), Lazear (1989) and Levine (1991) have suggested that wage

disparity may reduce productivity, whilst Lazear and Rosen (1981) and Ramaswamy

and Rowthorn (1991) propose that some dispersion of wages will increase productivity.

Generally, the empirical work on the impacts of pay inequality in baseball finds that wage

disparity (as measured by the Gini coefficient or Herfindahl-Hirschman Index (HHI)) is

associated with lower team performance.

We develop a unique theoretical model, which begins with a contest success function

to derive the probability of a team winning as a function of the effort and ability levels

of all players on both teams. In our model, this probability depends upon a parameter

which determines whether the impact of wage disparity is positive or negative, after

controlling for overall team ability. Our approach has several unique features. First,

the model allows for both theoretical possibilities - negative or positive influence of
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wage dispersion on performance. Secondly, it allows a link between the theoretical and

empirical literatures which has not been made before–the model provides a direct test

of a parameter that determines which of these theoretical possibilities better matches

the actual data. The model is general and can be applied to any organization where

people work in teams to achieve a goal.

For our empirical analysis we use MLB data from 1985–2010 matching players’

salaries to individual games. We replicate previous empirical papers which have looked

at wage disparity in baseball by regressing season-level winning percentage against mea-

sures of within-team wage inequality. We extend this previous empirical work in a novel

way by also estimating similar models at the level of individual games. Using maximum

likelihood, we estimate the theoretical model parameter which determines whether in-

equality is negatively or positively related to performance. We find consistent evidence

across the three approaches that inequality is associated with lower team performance,

conditional on total team wage bill.

In the concluding section we offer three possible interpretations of these results:

player effort is negatively affected by wage inequality and this has a negative impact

on team performance; given the current salary structure and conditional on the total

wage bill, teams could improve their performance by utilizing a more equal distribution

of player abilities; and that the current salary distribution reflects other factors than

maximizing team winning probability. Each of these three explanations is consistent

with the data and they are not incompatible with one another.

In the following we briefly review the literature on contest success functions, the

theoretical literature on the impacts of wage disparity generally and the empirical liter-

ature on wage disparity in baseball. We then present the theoretical model, focusing on

the model parameter which determines whether within-team wage disparity increases or

decreases the probability of winning. We then discuss the data used for the empirical

analysis and present model results. In the final section, we provide additional discussion

and conclusion.
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2 Background

The theoretical model presented in the next section is based upon a contest success

function, so we briefly consider work in this area. To motivate the discussion of whether

wage disparity has a positive or negative impact on performance, we discuss some work

from the theoretical labor economics literature on the subject. In order to place our

contribution within the work on wage disparity in baseball, we discuss the approaches

and results from previous work.

2.1 Contest Success Functions

The model presented in section 3 below derives the probability of a team winning as a

function of the effort of all players on both teams using a contest success function (CSF).

This type of function was first used in the economics literature by Tullock (1980) in the

context of efficient rent seeking. The CSF was constructed from an axiomatic basis by

Skaperdas (1996). Skaperdas showed that the additive CSF, which we employ, satisfies

the properties of symmetry and independence of irrelevant alternatives (that is, Team

A’s probability of winning against Team B is unaffected by Team C). In the same paper

he proved that the specific functional form used in this paper has the property of equi-

proportionate changes in effort across teams leaving the probability of each team winning

unchanged. These properties are desirable in our context.

2.2 Theoretical Literature

There are a large number of papers in the labor economics literature which model the

impacts of wage disparity on productivity. The literature predicts that wage inequality

can have positive or negative effects depending on the assumptions placed on the labor

market. The model we use assumes that wage differences reflect observable ability

differences and does not impose assumptions on worker responses to wage disparity.

Thus, our theoretical model is silent about the mechanism which is operating to make

wage inequality have either negative or positive effects on performance. The relevance

of the wage disparity literature is that it yields possible explanations for the estimated

value of our key model parameter and a motivation for our study.

The wage disparity literature is related to the efficiency wage literature in that
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both assume workers are not paid their marginal product, and that workers’ effort is

a function of the real wage (or expected real wage). Akerlof and Yellen (1991) gave a

direct application of the efficiency wage hypothesis with a specific functional form for

worker effort. Levine (1991) developed a model which also used assumptions made in

the efficiency wage literature. The difference between the two areas is that the efficiency

wage literature focuses on the effect of not paying workers their marginal product on

employment levels, whilst the wage disparity literature focuses on the implications of

wage compression or dispersion for productivity.

Lazear (1989), Levine (1991) and Akerlof and Yellen (1991) developed models in

which wage disparity reduces productivity. The common theme of these models is that

workers react negatively to wage disparity. Levine (1991) and Akerlof and Yellen (1991)

developed models in which workers responded negatively to wage disparity due to a sense

of fairness. Akerlof and Yellen (1991) modeled this directly by introducing the fair wage

hypothesis. Levine (1991) proposed a similar model, but rather than workers responding

directly to a fair wage, he included group cohesiveness as an increasing argument of

the production function, and assumed that group cohesiveness is decreasing in wage

disparity. Lazear (1989)1 used a different approach to reach the same conclusion. He

assumed wages were assigned by rank order tournament, and that workers could increase

their probability of winning in two dimensions; either by increasing effort or sabotaging

other workers. If workers have differing costs of sabotage, some wage compression may

increase firm profits.

Lazear and Rosen (1981) and Ramaswamy and Rowthorn (1991) suggested that

increased wage disparity may improve productivity, but came to this conclusion using

vastly different models. Lazear and Rosen (1981) suggested that wages are determined

via a rank order tournament. Workers are able to increase their probability of winning

through ex-ante skill investment. It was shown that a higher wage spread gives workers

a greater incentive to invest in skill, and will increase overall productivity. Ramaswamy

and Rowthorn (1991) assumed that worker effort is responsive to wage. They showed

that if output in some industries is more responsive to changes in effort than others, it

1Lazear (1989) adapts the model introduced in Lazear and Rosen (1981) to allow workers to increase
their probability of winning in two dimensions. The introduction of sabotage results in the possibility
of wage compression increasing productivity.
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would be optimal to pay a higher wage to workers in industries where the consequences

of reduced effort (referred to by the authors as damage potential) are higher. The key

difference between these papers and those that hypothesize that wage disparity will have

a negative impact on productivity is that Lazear and Rosen (1981) and Ramaswamy

and Rowthorn (1991) developed models in which workers respond to wage disparity

indirectly rather than directly.

2.3 Empirical Literature

Baseball has attracted the attention of applied economists since Rottenberg’s seminal

paper in 1956 (Rottenberg (1956)), which gave an economic perspective on the features

of the baseball labor market, and argued in favor of free agency. A similar argument

was given in Scully (1974). Since then many economic aspects of baseball have been

studied, including the impact of wage distribution on team performance.

The baseball literature generally finds a negative relationship between wage disparity

and team performance. Wiseman and Chatterjee (2003) conducted an empirical analysis

of the impact of wage disparity on team performance, using data from 1980–2002. They

measured wage inequality using Gini coefficient. Teams were divided into quartiles by

Gini coefficient, and win percentage for each quartile in the periods 1980–1990, 1991-1997

and 1998–2002 was tabulated. They observed that overall salary dispersion (measured by

interquartile range of Gini coefficient) had increased over the period under observation.

They concluded that since the number of games won by teams in the quartile with the

most inequality had decreased, whilst the number of games won by teams in the quartile

with the most equal wage distribution had increased, that wage disparity must have a

negative impact on team performance.

Debrock, Hendricks and Koenker (2004) came to the same conclusion using the

Herfindal-Hirschman Index (HHI). They analyzed the effects of expected and residual

wage disparity on team performance using data from 1985–1998. They first estimated

player salaries then found that increased expected inequality resulted in decreased per-

formance, whilst changes in residual wage disparity did not affect team performance.

Depken (2000) used data from 1980–1998 and measured wage disparity using HHI.

He also concluded that wage disparity and performance are negatively related. Annual
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team win percentage was estimated using team salary, a linear time trend and HHI, with

both fixed and random effects specifications. He found that the results were not affected

by the specification chosen. This paper used similar data and measure of inequality

as Debrock et al. (2004), so despite the differences in estimation technique it is not

surprising that both found wage disparity has a negative impact on performance.

Avrutin and Sommers (2007) used baseball data from 2001–2005 and concluded that

wage disparity does not result in decreased team performance. They regressed annual

team win percentage on Gini coefficient and team payroll, and found that with the

exception of 2003, neither variable was significant at the 5 per cent level. Although

this fails to confirm the previous findings, it should be noted that the period under

consideration was very short.

Richards and Guell (1998) also considered the relationship between team success and

salary structure, however their focus was on whether teams maximise win percentage

or attendance. Rather than allowing wage disparity to impact performance flexibly, it

was assumed that teams maximizing win percentage would have lower salary variance.

Harder (1992) also considered the impacts of wage disparity on performance, but the

background of his hypotheses was from the psychology rather than economics literature,

and the focus was on individual rather than team performance.

Jane (2010) considered the question of endogeneity in the relationship between salary

dispersion and team performance. Using data from 1998–2007, he developed an empirical

model based on that used by Depken (2000) and tested for Granger causality between

total salary and performance as well as between salary dispersion and performance. He

found that team performance did not Granger cause salary dispersion. The possibility

of causality running in both directions is not considered in the theoretical literature, and

Jane’s results provide further support for the assumption of exogeneity of wage disparity

which we employ in this paper.

Wage disparity has been considered in other sports. Of particular interest is Sim-

mons and Berri (2011), which considered the impacts of wage disparity in the National

Basketball Association (U.S.). They developed a theoretical model, based on Lazear’s

1989 work, to motivate their empirical study. The empirical analysis followed Debrock

et al. (2004) and considered the impacts of conditional and unconditional wage inequal-

7



ity. They found that increases in expected wage inequality, measured by Gini coefficient,

increased team performance, which supports Lazear and Rosen’s tournament theory hy-

pothesis.

In the next section, a contest success function is used to derive a model of team win-

ning probability. Following that the model is tested using MLB data, and the previous

empirical studies on baseball and wage dispersion are replicated for comparability.

3 Model

In this section we develop a simple model of team cohesiveness. Our purpose is to

generate hypotheses which can be tested in the data. In the model, players contribute,

through effort, to the team probability of winning. Since winning has a public good

aspect, and since effort is costly, players may have an incentive to shirk.

This simple model takes salaries as given and abstracts from many interesting aspects

which determine baseball salaries. Players’ only incentive to give effort, in the model,

is to increase the probability of winning. The model is a one-period model: we abstract

from effort that players might give in the goal of attaining future higher salaries, although

inasmuch as these efforts simultaneously contribute to the probability of winning, one

can view them as being incorporated in the player’s utility function. Thus there are no

explicit incentive effects of salaries and we do not model strategic interaction between

owners (who determine salaries) and players.

The model is designed to investigate the effect of a particular distribution of salaries

on team performance, not to determine the salary distribution. Although it would be

desirable to develop a model that allows us to empirically separate cohesiveness from

incentive, and hence study these strategic interactions, our inability to separately observe

effort and ability makes this impossible.

The model begins by proposing a contest success function (CSF) which determines

the probability of each team winning as a function of their own and the other team’s

effort, that is,

πA(eA, eB) =
eA

eA + eB
(1)

πB(eA, eB) = 1− πA(eA, eB) (2)
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where πA, πB are the respective probabilities of team A and B winning the game, and

eA, eB is total effective effort (effort interacted with ability) of team A and team B. It

is assumed that players do not behave cooperatively. Consequently, team effective effort

is just the sum of individual effort multiplied by individual ability;

eA =
n∑

p=1

e∗Ap ωA
p and eB =

n∑
p=1

e∗Bp ωB
p (3)

We assume that e∗ takes a value between zero and one. Each player has a given ability

ω which he can use fully (e∗ = 1) or not at all (e∗ = 0) or somewhere in between.

The assumption that total team effective effort is just the sum of individual effective

efforts (eAp = e∗Ap ωA
p ) is important for model tractability. It may be viewed as a first-

order approximation to a more complicated function that includes interaction terms. For

baseball, we argue that this approximation is a good one. Most outcomes in baseball are

determined by the individual effort and ability of the pitcher, the hitter, the runner, or

the fielder. Of course, infielders must work together to generate double plays, outfielders

must communicate effectively to avoid running into each other and, perhaps most impor-

tantly, catchers and pitchers must develop strong working relationships. Nonetheless,

the contribution of individual effort and ability in overall team success is much easier to

measure and disentangle than in other sports which are inherently more team-oriented,

such as basketball or soccer.

Total team effective effort is determined by each player choosing the best response

to all other players’ effective effort levels, with individuals maximizing net benefit. The

net benefit function of player p on team A is given by

UA
p (eAp ) =

eA

eA + eB
− (e∗Ap )λ

=
eA

eA + eB
−
(
e∗Ap ωA

p

ωA
p

)λ

(4)

Players get utility from winning and pay a cost of effort. We abstract away from the

utility that players might get from future expected contract benefits independent of

whether their team wins or not. Player effort towards production on defense or offense

will contribute both to the probability of the player’s current team winning and the

probability of future higher salary for the player. We assume that both effects are

subsumed in the increased probability of the player’s current team winning. Again, this
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is primarily for tractability.

Note that all players benefit equally from an increase in the probability of winning,

but increasing individual effort is costly. λ is a parameter that determines the size of

the effort cost. Since e∗Ap ∈ [0, 1] the cost of effort is decreasing in λ and the amount of

effort provided will be increasing in λ.

We use player wage as a proxy for ability. For players who have achieved free agency,

the free market for their talents is such that ability should be rewarded with wage. For

players in the early years of their career, arbitration and market pressure make it such

that these players also achieve high salaries when they show high ability. Thus, in 2011,

for example, Prince Fielder of the Milwaukee Brewers, who had not yet achieved free

agency nonetheless made $15.5 million (a compromise achieved between player and team

to avoid arbitration), making him one of the top paid players on the team.

Using wage, wA
p , as a proxy for ability the net benefit equation becomes

UA
p (eAp ) =

eA

eA + eB
−
(

eAp
wA
p

)λ

(5)

We could allow players to be paid more than their ability but in order to generate a

model that can be used to estimate λ from the data we must assume that all players

are paid a salary which reflects a constant multiple above ability.2

Player p chooses e∗Ap which is equivalent to choosing eAp for a given wage and ability.

Player p’s first order condition for maximization of the net benefit function is

∂UA
p (eAp )

∂eAp
=

eB

(eA + eB)2
− λ

wA
p

(
eAp
wA
p

)λ−1

= 0, p ∈ 0, . . . n (6)

The second order condition for maximization is

∂2UA
p (eAp )

∂(eAp )
2

=
−2eB

(eA + eB)3
− λ(λ− 1)

(wA
p )

2

(
eAp
wA
p

)λ−2

< 0, p ∈ 0, . . . n (7)

Clearly this will hold for all λ ≥ 1. However, for 0 < λ < 1, the term

−λ(λ− 1)

(wA
p )

2

(
eAp
wA
p

)λ−2

(8)

2wA
p = kωA

p with constant k across players.
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is positive, so the overall sign of the second derivative is ambiguous. Let μ ∈ [0, 1] be

the value such that

−2eB

(eA + eB)3
− μ(μ− 1)

(wA
p )

2

(
eAp
wA
p

)μ−2

= 0 (9)

For all λ > μ, the second order condition will hold. In the derivation of the theoretical

model it is assumed that λ > μ. In the empirical application that follows, the second

order conditions can be tested in terms of the observed wage data (not in terms of

unobserved effort as expressed here). It is found that the second order conditions (for

equations (16) and (17) below) do hold for the value of λ which maximizes the likelihood

function.

The first order condition can be rearranged to give an expression for eAp ,

eAp = (wA
p )

λ
λ−1

(
eB

λ(eA + eB)2

) 1
λ−1

p = 1, . . . , n (10)

This maximization condition holds for all players. Summing over p yields

eA =

n∑
p=1

(wA
p )

λ
λ−1

(
eB

λ(eA + eB)2

) 1
λ−1

(11)

By symmetry

eB =

n∑
p=1

(wB
p )

λ
λ−1

(
eA

λ(eA + eB)2

) 1
λ−1

(12)

Let XA =
∑n

p=1(w
A
p )

λ
λ−1 , and define XB equivalently. These can be rearranged and

written as XA = (wA)
λ

λ−1
∑n

p=1(α
A
p )

λ
λ−1 , where wA =

∑n
p=1w

A
p and αA

p =
wA
p

wA
for

p = 1, . . . , n. This gives the interpretation that players’ effort levels are a function of

relative wage shares. Observe that

eA

eB
=

(
XA

XB

)λ−1
λ

(13)

Using (11), (12) and (13), we can solve for team A’s best response (i.e. the collective

best response of each player on team A) to the effort level of team B, which will yield

the Nash equilibrium values of team effort. Some rearranging gives

eK∗ = (XK)
λ−1
λ

⎛⎜⎝ (XA)
λ−1
λ (XB)

λ−1
λ

λ
(
(XA)

λ−1
λ + (XB)

λ−1
λ

)2
⎞⎟⎠

1
λ

, K = A,B (14)
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Substituting into the CSF yields

πA =
1

1 +
(
XB

XA

)λ−1
λ

, πB =
1

1 +
(
XA

XB

)λ−1
λ

(15)

or explicitly,

πA =
1

1 +

(
(wB)

λ
λ−1

∑n
p=1(α

B
p )

λ
λ−1

(wA)
λ

λ−1
∑n

p=1(α
A
p )

λ
λ−1

)λ−1
λ

(16)

πB =
1

1 +

(
(wA)

λ
λ−1

∑n
p=1(α

A
p )

λ
λ−1

(wB)
λ

λ−1
∑n

p=1(α
B
p )

λ
λ−1

)λ−1
λ

(17)

It can be shown that the probability of a team winning will be increasing in relative

wage share. For a given total wage bill and salary distribution of the opposing team,

the probability of team A winning is increasing in wage inequality if λ > 1, and the

probability of winning is decreasing in wage inequality if 0 < λ < 1. We can logically

rule out values of λ < 0 as marginal cost of effort will be negative for these values.

The impact of increasing inequality on the probability function is non-monotonic in λ,

that is, the impact of higher inequality on probability of winning is increasing in λ for

0 < λ < 1, and decreasing in λ for λ > 1 (see figure 1 below). The function is undefined

at λ = 1, and its value as λ approaches 1 depends on whether λ < 1 or λ > 1. Table

1 presents the limiting values of the probability of winning for team A as λ approaches

key limiting values where the function is discontinuous or undefined.

Table 1: Limits of probability πA

x 0 1− 1+ +∞
limλ→x

wA
∑n

p=1(α
A
p )

1
n

wA
∑n

p=1(α
A
p )

1
n +wB

∑n
p=1(α

B
p )

1
n

wAmin(αA
p )

wAmin(αA
p )+wBmin(αB

p )

wAmax(αA
p )

wAmax(αA
p )+wBmax(αB

p )
wA

wA+wB

Figure 1 shows the impact of changing the ratio of team A’s wages to team B’s

wages on the predicted probability of winning. In generating this figure, the wage of

each player on team B has been set to 1
9 , and the total wage bill of team B is 1. In

order to generate a non-constant probability the wage distribution of team A has been

set such that one player receives 2
9 , 6 players receive 1

9 and 2 players receive 1
18 of the
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total wage bill. To demonstrate the impact of varying λ, we have graphed predicted

probabilities for several values of λ. Figure 2 graphs the predicted probability of team

A winning against λ for several different wage distributions. It illustrates that for λ

between 0 and 1, the probability of winning is decreasing in inequality, whilst for λ > 1

the probability is increasing in wage disparity. However, as λ increases the gains from

wage dispersion decrease. The wage distributions used are outlined in Table 2.

Using baseball data on game outcomes and player salaries for both teams, we will

estimate the value of λ by maximum likelihood. The model provides the probability

of winning an individual game. We can consider the salary of all players on the team

for each game even if they do not appear in that game. Alternatively, we can use only

salaries of players who appear in that particular game. This latter is our preferred imple-

mentation of the model. Estimation by maximum likelihood will allow us to determine

whether wage disparity has a positive or negative impact on team performance.

Figure 1:
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Figure 2: In the region to the left of the vertical line at λ = 1, probability of winning is decreasing in
wage inequality, whilst in the region to the right it is increasing in wage inequality. For greater levels of
inequality, the effect on the probability of winning of inequality is larger.

Table 2: Wage distributions

Total Inequality
Player 1 2 3 4 5 6 7 8 9

Share of wage bill 1 0 0 0 0 0 0 0 0

Substantial inequality
Player 1 2 3 4 5 6 7 8 9

Share of wage bill 4/9 4/9 1/36 1/36 1/36 1/36 1/36 1/36 1/36

Partial inequality
Player 1 2 3 4 5 6 7 8 9

Share of wage bill 2/9 1/9 1/9 1/9 1/9 1/9 1/9 1/18 1/18

No inequality
Player 1 2 3 4 5 6 7 8 9

Share of wage bill 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9
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4 Data

There are several aspects of baseball which make it ideal for studying the impacts of

wage disparity. The abundance of data is extremely useful for gaining reliable empirical

insights. Furthermore, the win/loss nature of baseball games allows for a clear measure

of performance, which may be difficult to define or obtain in other areas. It can also

be argued that there is a clearer relationship between player effort and performance

in sport than in other occupations. Also, although clearly a team sport, in baseball

players’ individual performance is less related to the effort of other players than in other

sports, as we argue in the preceding section. The data that we use are available online.

The game level data was obtained from http://www.retrosheet.org/, and the salary

data was obtained from www.baseball1.com/. The game data contained logs for 58,832

games. The salary data had 21,457 observations.

We use game and salary data from 1985–2010. Although earlier data are available

the proportion of missing salaries is much higher before 1985. There is data on a total

of 30 teams3. To estimate our preferred version of the theoretical model we require

a data set with the salaries of each player appearing in that game. We use wages

for the nine starting players in each game. In the National League, this is the nine

starting players including the pitcher. In the American League, this is the nine starting

players including the designated hitter, but omitting the pitcher. Substitutions are

ignored. Again, this is a simplification, but one that avoids the inherently subjective

problem of determining correct weights for players who leave a game before the end

or who enter as a substitute. The importance of the contribution of a substitute is

not easily measured by innings played or pitched. Key pinch-hit appearances or short

relief appearances in clutch situations have disproportionate importance relative to the

length of the appearance. We do estimate the model using the salaries of all team players

weighted equally which includes all substitutes potential and actual and our conclusions

are unaffected, as discussed in section 5 below.

Matching salary and game data was a non-trivial problem as the two data sets did

not share a common player identifier. We created a new identifier for both data sets

3Montreal Expos (1969–2004) and Washington Nationals (2005–present) are treated as the same
team, as were the California Angels, Anaheim Angels and the Los Angeles Angels of Anaheim
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and had to ensure uniqueness across a variety of complex circumstances. For example,

in our data window there were two seasons where same-named father and son played

on the same team in the same year. The existing empirical studies use annual team

winning percentage in each year as the dependent variable, so the problem of matching

players’ salaries to games has not previously been considered.

Once this identifier was created the two data sets were merged, which resulted in

almost 90 per cent of players (939,540) being matched to their salary. 11 per cent of

players were left without salaries (119,436), and less than 1 per cent of salaries were not

matched to players. This would occur in instances where a player does not appear in

the first 9 players during a season, or when they are injured and unable to play. The

existing empirical literature makes no mention of how missing salaries are dealt with.

Due to the nature of the model that we are using, any game for which one or more

salaries was missing would have to be discarded. Since players could play in over 100

games each year, the 10 per cent of missing salaries would result in around 80 per cent

of games being discarded. For this reason we extensively researched individual player

salaries and imputed some missing salaries in our data.

The imputation methods used are straightforward. League minimum salaries from

1985–2010 are available online at http://www.baseball-reference.com/bullpen/Minimum_

salary. All players with missing salaries who appear less than 50 times (i.e. in less

than 50 games in a year) were assigned the league minimum. For players who appeared

more than 50 times, we attempted to find the actual salary online from a wide variety

of sources–sports websites, newspaper reports, and official baseball sites. In years where

players changed teams their salary was often missing even when we could discover what

their new team paid. Using these methods, we found salaries for more than half of those

who played over 50 times. If the salary was not available online, we imputed the salary.

Players in their first year were assigned the league minimum. Players with one or two

years of salaries missing during their career were assigned a midpoint. Players in the sec-

ond or third year of their career with data available for subsequent years were assigned

the average of the league minimum in that year and their first available salary. There are

40 players for whom the above techniques were considered questionable. These salaries

were imputed using the following techniques: Most recent previous salary was used for
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Figure 3: Salary distribution over time

players with at least one year of salary available, and the league minimum salary was

used in all other cases. These observations have been assigned an identifier so our results

can be tested for robustness. In the following empirical analysis we use three data sets.

The main data set includes imputed values for all players with missing salaries. The

data set which we refer to as the ‘limited imputation data set’ excludes imputed salaries

for players who appeared less than 50 times and the 40 players for whom the imputation

techniques were considered to be less reliable. The third data set excludes all players

for whom salaries were missing in the data.4

We drop 20 games in which there was a draw (generally games that were suspended

because of rain or lateness and never completed), leaving 58812 games for use in estima-

tion. The minimum, average and maximum salaries for each year are shown in Figure

3. This gives an indication of the extent of wage disparity in baseball and its increase.

Figure 4 shows the percentage of games won by the home team in each year. From this

it is clear that there are distinct home and away effects. Table 3 shows average win

percentage for the period 1985–2010 by team. In estimation, we need to take account

of year, team and home/away effects.

4Full matched data available from the authors. Link to website to be provided on acceptance.
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Figure 4: Home and away team winning percentages

Table 3: Team winning percentages

Team Average win percentage Team Average win percentage

ARI 49 MIL 47
ATL 54 MIN 50
BAL 46 NYA 57
BOS 54 NYN 52
CHA 52 OAK 53
CHN 49 PHI 50
CIN 50 PIT 45
CLE 50 SDN 48
COL 48 SEA 49
DET 47 SFN 52
FLO 48 SLN 53
HOU 52 TBA 44
KCA 46 TEX 49
LAA 52 TOR 52
LAN 52 WAS 48
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5 Results

We begin by replicating descriptive regressions in the existing literature over an extended

time period. Wiseman and Chatterjee (2003) and Avrutin and Sommers (2007) regress

team winning percentage for each year on total wages and Gini coefficient. We regress

team winning percentage for each year from 1985–2010 on average salary and Gini

coefficient. The empirical model is

winpcti = b0 + b1avesali + b2ginii + ei (18)

We have used average salary in millions of dollars (avesal) because the number of players

appearing on a team in each year varies. In Table 4 we present the results of these

regression estimates. We include models with and without imputed salaries.

Table 4: Regressions of Season Total Winning Percentage

(1) (2) (3) (4)
winperc winperc winperc winperc

avesal .0152∗∗∗ .0217∗∗∗ .0107∗∗∗ .0121∗∗∗

(7.35) (9.30) (6.90) (7.70)

gini -0.132∗∗ -0.190∗∗∗ -0.131∗∗∗ -0.169∗∗∗

(-3.24) (-4.59) (-4.35) (-5.44)

Constant 0.552∗∗∗ 0.584∗∗∗ 0.550∗∗∗ 0.568∗∗∗

(23.69) (24.04) (33.30) (33.36)

Observations 738 738 738 738

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Model (1) follows Wiseman and Chatterjee (2003) and uses the highest 25 salaries

for each team in each year to calculate the average salary and Gini coefficient. Model (2)

uses the salaries for all players who appear in at least one game during the season, and

includes all imputed salaries. Model (3) uses the data set with limited salary imputation

and model (4) uses no imputed salaries.

As would be expected there is a significant positive relationship between average

salary (acting as a proxy for wage bill and the sum of total player abilities) and team

winning percentage. The coefficients of gini demonstrate a significant negative rela-

tionship between wage inequality and winning percentage after controlling for average
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team salary. The results are robust to exclusion of imputed salaries. If we use the

Herfindahl-Hirschman Index (HHI) instead of the gini coefficient, we get similar results.

We also estimate, using game level data, outcomes using team wage ratio and a

measure of inequality (HHI5). We use all games from 1985–2010, and for each game the

salaries of the 9 starting players for the home and away teams. This in itself contributes

to the literature in this area, as previous work has only considered annual winning

percentage. This allows the salary distribution of players appearing in specific games

to affect the outcome. The models are estimated using probit specifications. The basic

empirical model is as follows:

P̂r(a winsi) = Φ
(
b0 + b1wageratioi + b2HHIAi + b3HHIBi

)
(20)

where a wins refers to the away team winning the game, wageratio is the ratio of the

away team’s wages to the home team’s wages, and HHIA and HHIB are the HHI

for the away and home teams respectively. This model is then extended by including

dummy variables for 29 home teams and 29 away teams. The results of these regressions

are presented in Table 5. (Using home and away gini coefficients gives similar results.)

These results demonstrate that there is a significant positive effect of team wage

ratio on the probability of winning. They also indicate a significant negative effect of

own team wage disparity on the probability of winning games. The full results of these

regressions are included in Appendix 1. We estimated models without HHIB, but a

likelihood ratio test rejected the null hypothesis that the coefficient of HHIB is zero.

An interesting result of the estimations is that wage disparity on the opposing team is

found to increase the probability of winning. We estimated models with home/away

team effects and year effects, and using a likelihood ratio test were unable to reject

the null that all year coefficients were zero, but were able to reject the null that all

home/away team coefficients were zero. This held in all three variants of our data set.

To determine which of the estimated models is more effective in terms of predicting

game outcomes, we show the percentage of correctly predicted games (Table 6).

5

HHI =

9∑
j=1

(wj

w

)2

(19)

where wj is the salary of player j, and w is the team wage bill
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Table 5: Regressions of Game-level Probability of Winning

(1) (2) (3) (4) (5) (6)
A wins A wins A wins A wins A wins A wins

A wins
wageratio 0.0558∗∗∗ 0.0473∗∗∗ 0.0543∗∗∗ 0.0440∗∗∗ 0.0564∗∗∗ 0.0471∗∗∗

(13.83) (10.60) (7.12) (5.20) (5.92) (4.40)

HHI A -0.483∗∗∗ -0.427∗∗∗ -0.452∗∗∗ -0.381∗∗ -0.583∗∗∗ -0.522∗∗

(-6.87) (-5.93) (-3.47) (-2.84) (-3.45) (-2.98)

HHI B 0.557∗∗∗ 0.584∗∗∗ 0.515∗∗∗ 0.547∗∗∗ 0.530∗∗ 0.569∗∗∗

(7.99) (8.17) (4.00) (4.13) (3.19) (3.30)

Constant -0.195∗∗∗ -0.161∗∗∗ -0.178∗∗∗ -0.105 -0.152∗∗ -0.0224
(-8.63) (-3.48) (-4.57) (-1.44) (-3.05) (-0.24)

Home/away No Yes No Yes No Yes
team effects
Imputed salaries Yes Yes Limited Limited No No

Observations 58812 58812 46400 46400 30332 30332

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

These tables show a substantial improvement on the predictive power of those models

which include home/away team effects. It is interesting to observe that a model which

simply predicts that the home team will always win predicts 54.11% of games correctly

(in the full sample of 58812 games).

Next, we estimate the value of λ from the theoretical model using maximum likeli-

hood estimation. Given the information on which team won each game and individual

player salaries, a likelihood function can be written where the likelihood contribution

for games won by team A is πA, and the likelihood contribution for games lost by team

B is πB = (1− πA). That is,

L(λ) =
N∑
i=1

T∑
t=1

winitπ
A
it +

N∑
i=1

T∑
t=1

(1− winit)(1 − πA
it) (21)

=

N∑
i=1

T∑
t=1

winit
1

1 +
(
XB

it

XA
it

)λ−1
λ

+

N∑
i=1

T∑
t=1

(1− winit)

⎛⎜⎜⎝1− 1

1 +
(
XB

it

XA
it

)λ−1
λ

⎞⎟⎟⎠ (22)

where winit is a dummy variable which takes on value one if team A wins game i at

time t, and zero otherwise. XA
it and XB

it for game i at time t are functions of relative
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Table 6: Game predictions and outcomes
Model 1 (54.89% correctly classified)

Away win Home win Total

Predict away team wins 3329 2870 6199
Predict home team wins 23658 28955 52613

Total 26987 31825 58812

Model 2 (55.56% correctly classified)
Away win Home win Total

Predict away team wins 6187 5335 11522
Predict home team wins 20800 26490 47290

Total 26987 31825 58812

Model 3 (54.41% correctly classified)
Away win Home win Total

Predict away team wins 1222 1076 2298
Predict home team wins 9500 11402 20902

Total 10722 12478 23200

Model 4 (55.51% correctly classified)
Away win Home win Total

Predict away team wins 2631 2230 4861
Predict home team wins 8091 10248 18339

Total 10722 12478 23200

Model 5 (54.29% correctly classified)
Away win Home win Total

Predict away team wins 928 823 1751
Predict home team wins 6110 7305 13415

Total 7038 8128 15166

Model 6 (55.13% correctly classified)
Away win Home win Total

Predict away team wins 1960 1727 3687
Predict home team wins 5078 6401 11479

Total 7038 8128 15166
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wage concentration and λ as defined in Section 3.

We can augment the likelihood function to allow for home/away effects. We redefine

the probability of winning, so that πA,v
it = πA

it − α is the probability of team A winning

as the visiting team, and winA,v
it equals one if the visiting team (A) wins. α is chosen

such that the percentage of games won by the visiting team in the sample is equal to

the average predicted probability of team A winning as the visitor in the model. This

gives the following moment condition:

N∑
i=1

T∑
t=1

(π̂A
it − α̂) =

N∑
i=1

T∑
t=1

winA,v
it (23)

Beginning by setting α = 0, we solve for λ by maximum likelihood and then use the

estimated λ̂ to solve for α. The iteration is continued until convergence is achieved, as in

the EM-algorithm. The final extension of the estimation involves allowing for home and

away team and year effects. The probability of the visiting and home teams winning

game i at time t are now redefined as follows:

Pr(Visiting team(A) wins) ≡ πA,v
it = πA

it − αAtv − αBth (24)

Pr(Home team(B) wins) ≡ πB,h
it = πB

it + αAtv + αBth (25)

Parameter estimates are obtained as discussed above.

The reported results are for an estimation in which λ is constrained to be positive.

However, the results are not sensitive to this constraint; the largest likelihood value

is still for positive values of λ. The discontinuity of the probability function at one

results in different estimates of λ depending on whether the starting value is less than or

greater than one. The estimation with starting value less than one gives a larger mean

likelihood, so it is this result that we report. We also estimate the likelihood function

for the limiting cases of Table 1, but all of these cases produce much lower likelihood

values than the maximums presented in Table 7.

We report results using the data set with imputed values for all missing salaries, the

data set with limited imputation and the data set with no salary imputation. We also

report results allowing for home/away team and year effects. The estimated value of λ

is consistently between zero and one. Table 7 also shows that allowing for home/away

team effects and year effects improves the predictive success of the model.
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Table 7: Estimation of λ
Data Home/away Year effects Coefficient(λ) Predictive Sample size

team effects (S.E). success(%)

Imputed No No 0.00249 53.54 58812
salaries (0.00006)

Yes No 0.122 54.62
(0.00054)

Yes Yes 0.111 54.74
(0.0021)

Limited Yes No 0.247 54.05 23200
imputed data (0.0047)

Yes Yes 0.247 54.12
(0.0047)

No imputed Yes No 0.247 54.32 15166
data (0.0065)

Yes Yes 0.247 54.23
(0.0065)

The implication of λ being between zero and one is that wage disparity has a nega-

tive impact on team performance. Considering the original maximization problem that

players face, λ between zero and one (given e∗Ap ∈ [0, 1]) implies a larger cost of effort

than when λ is greater than one. It also implies that marginal cost of effort is decreas-

ing. While this is somewhat surprising, sport is different from other economic activities.

Professional baseball players have paid enormous fixed costs of effort to reach the major

leagues. For each game, they also incur large fixed costs of warming up and marginal

efforts in the last 5 minutes may be easier to make than those in the first 5 minutes.

Game length is short and players may still be in the range of decreasing marginal costs

of effort. This would not be the case for marathon runners, for example. λ between zero

and one also implies that for constant visiting team wage inequality, increases in home

team wage disparity will increase the probability of the visiting team winning. This is

consistent with the results from the descriptive regressions.

Given that the baseball season is long and that many games late in the season

are played between teams which are eliminated from any possibility of playing in the

playoffs, we also considered estimating λ using only data from playoff games, where

players might be expected to exert maximum effort. The sample size is much smaller

(119 games) and we find a value of λ around 0.7, still consistent with inequality having

a negative relationship with team performance. This does provide some evidence that
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the marginal cost of effort is higher for playoff games than non-playoff games. Instead

of using game-level data, we can also calculate equation (16) summing over all players

on the team instead of only summing over those players who play each individual game.

Doing this results in the expressions in (16) being constant within a season for each

team, although teams are still varying the team against which they are playing and

win/loss outcomes vary across games. We can estimate our model (without team*year

interaction effects) and cluster the standard errors to address this problem. We find

very similar values for λ as those presented in Table 7.

6 Discussion and conclusion

Economists have long recognized and studied the relationship between wage disparity

and individual effort when working in teams. If, for a given wage bill, the distribution

of wages between workers affects the level of worker effort, then this has implications for

firm decision-making. In this paper we have written down a simple model that allows

for both negative and positive effects of wage inequality on team performance. We

have estimated the key parameter using data from baseball and conclude that there is

a negative relationship between wage dispersion and overall team performance.

The main contribution of this paper is the link between a theoretical model in which

wage dispersion matters and the test of the key model parameter using wage data. We

construct a unique theoretical model, built up from a contest success function, that

relates individual effort to overall firm or team performance. Although we apply the

model to data from Major League Baseball, the model is general. Optimal individual

player effort is a function of both wage dispersion and a parameter which determines

whether wage dispersion has a positive or negative effect on effort, and consequently the

probability of winning. Both possibilities are theoretically acceptable within the model

and the model allows these alternatives to be tested using available data. We find that

the key model parameter takes a value in the range where wage dispersion is negatively

related to effort.

A secondary contribution of the paper is that we extend the previous empirical

literature on wage inequality in baseball by estimating the association between of wage

inequality on both season-level and game-level team outcomes and examine a long data
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set which spans 25 years.

Our model contains several strong, simplifying assumptions which allow us to apply

the theoretical model to the available data. In particular, we can not separate the

effects of effort and ability as both are unobserved. Thus, our results are consistent with

a variety of interpretations. If we take the model and its assumptions as given, then

we would conclude that increased wage dispersion leads to lower individual effort, and

consequently lower team performance. In the model, this is due to the fact that effort

is costly. The key parameter value is in a range where the marginal cost of effort is

high and thus players with lower ability shirk relative to those with higher ability. The

benefit of giving full effort is lower for lower ability players since the decrease in team

winning probability is lower for these players when they do not give full effort.

An alternative interpretation to our results is that we are uncovering a feature of

the ability distribution. Consider the possibility that all players give 100 per cent effort.

This may not be unreasonable as the rewards to stardom are large and when we consider

players in U.S. Major League Baseball we are considering an extremely selected sample

of individuals from amongst the tens of thousands of baseball players around the world

trying to make the top echelon of the sport. In that case, our results can be interpreted

as saying that team winning probability may be increased by having a more equal

distribution of abilities within the team. A team with ten million dollars to spend

may do better by hiring two five million dollar players rather than one nine million

dollar player and one one million dollar player. Given the complementary nature of

offensive production (home run hitters need runners on base to amass large runs batted

in statistics; teams mostly score by stringing together consecutive base hits, walks, etc.)

this also seems like a reasonable interpretation.

Another interpretation of our results, and one that seems absent from most of the

previous empirical literature, is that the player salary structure is not chosen to optimize

team winning percentage but rather to optimize the utility of the owner or the net

revenues of the club. Neither of these may be maximized when team winning probability

is maximized. Many owners run their clubs as a hobby and also the presence of a star

player may increase gate revenues and merchandise sales well beyond the player’s effect

on the team’s probability of winning. Data on team finances is a fiercely guarded
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secret, thus it would be hard to operationalize such a model.6 However, the result that

inequality is negatively related to team performance can easily be explained by such a

hypothesis. Alex Rodriquez and his $32 million dollar salary contribute importantly to

the inequality of the salary distribution for the New York Yankees. His value is perhaps

more important to owner ego (knowing that one has bought the best, like a luxury car)

and merchandise sales than to team winning probability.

The results from estimation of our theoretical model, and of the descriptive regres-

sions which replicate what others have done previously, consistently indicate that wage

disparity and team performance are negatively associated. Our results do suggest that

managers attempting to maximise team performance with a given wage bill may wish

to consider minimizing wage (and thus ability) dispersion. Our model is consistent with

a variety of mechanisms through which this effect may be operating.

Applying the model to other types of workplace settings remains a question for fu-

ture research. Innovative data which allows identification of ability, effort and wage,

perhaps through matched employer-employee data which contains information on em-

ployee performance evaluations might allow for some progress to be made on this issue.

6Richards and Guell (1998) look at whether teams attempt to maximize attendance rather than
winning, but attendance is only one part of team revenues.
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Appendix 1: Full results from regressions

Table 8: Regressions of Game-level Probability of Winning

(1) (2) (3) (4) (5) (6)
A wins A wins A wins A wins A wins A wins

A wins
wageratio 0.0558∗∗∗ 0.0473∗∗∗ 0.0543∗∗∗ 0.0440∗∗∗ 0.0564∗∗∗ 0.0471∗∗∗

(13.83) (10.60) (7.12) (5.20) (5.92) (4.40)

HHI a -0.483∗∗∗ -0.427∗∗∗ -0.452∗∗∗ -0.381∗∗ -0.583∗∗∗ -0.522∗∗

(-6.87) (-5.93) (-3.47) (-2.84) (-3.45) (-2.98)

HHI b 0.557∗∗∗ 0.584∗∗∗ 0.515∗∗∗ 0.547∗∗∗ 0.530∗∗ 0.569∗∗∗

(7.99) (8.17) (4.00) (4.13) (3.19) (3.30)

Visting team
ARI -0.0916 -0.0294 -0.0335

(-1.81) (-0.36) (-0.33)

ATL 0.0282 0.00718 0.0277
(0.66) (0.11) (0.33)

BAL -0.106∗∗ -0.112 -0.116
(-2.69) (-1.84) (-1.47)

BOS -0.0109 -0.0254 -0.0203
(-0.28) (-0.42) (-0.26)

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Continued next page
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Table 8 continued

(1) (2) (3) (4) (5) (6)
A wins A wins A wins A wins A wins A wins

Visiting team
CHA -0.0333 -0.0460 -0.0310

(-0.85) (-0.78) (-0.40)

CHN -0.100∗ -0.153∗ -0.153
(-2.34) (-2.23) (-1.77)

CIN -0.0110 -0.0200 -0.0570
(-0.26) (-0.29) (-0.65)

CLE -0.0727 -0.0839 -0.0551
(-1.85) (-1.41) (-0.72)

COL -0.215∗∗∗ -0.290∗∗∗ -0.366∗∗∗

(-4.59) (-3.95) (-3.97)

DET -0.166∗∗∗ -0.222∗∗∗ -0.223∗∗

(-4.22) (-3.66) (-2.87)

FLO -0.124∗∗ -0.178∗ -0.136
(-2.67) (-2.45) (-1.48)

HOU -0.0776 -0.0673 -0.0298
(-1.82) (-1.01) (-0.35)

KCA -0.133∗∗∗ -0.153∗ -0.231∗∗

(-3.39) (-2.54) (-2.91)

LAA -0.00186 -0.0454 -0.0506
(-0.05) (-0.75) (-0.65)

LAN -0.0514 -0.0973 -0.154
(-1.20) (-1.43) (-1.79)

MIL -0.105∗∗ -0.136∗ -0.0789
(-2.63) (-2.21) (-1.00)

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Continued next page
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Table 8 continued

(1) (2) (3) (4) (5) (6)
A wins A wins A wins A wins A wins A wins

Visiting team
MIN -0.0740 -0.118 -0.148

(-1.88) (-1.94) (-1.87)

MON -0.106∗ -0.111 -0.118
(-2.47) (-1.61) (-1.33)

NYA 0.0215 0.0148 -0.0166
(0.54) (0.24) (-0.21)

NYN -0.0547 -0.0453 -0.0394
(-1.28) (-0.67) (-0.45)

OAK 0.00729 -0.0133 -0.104
(0.19) (-0.22) (-1.30)

PHI -0.0855∗ -0.138∗ -0.144
(-1.99) (-2.06) (-1.68)

PIT -0.195∗∗∗ -0.171∗ -0.130
(-4.54) (-2.50) (-1.50)

SDN -0.0800 -0.157∗ -0.136
(-1.87) (-2.29) (-1.54)

SEA -0.113∗∗ -0.124∗ -0.0706
(-2.87) (-1.98) (-0.87)

SFN -0.0668 -0.0979 -0.0292
(-1.56) (-1.45) (-0.34)

SLN -0.0368 -0.0316 -0.0244
(-0.86) (-0.48) (-0.29)

TBA -0.228∗∗∗ -0.255∗∗ -0.251∗

(-4.72) (-3.19) (-2.40)

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 8 continued

(1) (2) (3) (4) (5) (6)
A wins A wins A wins A wins A wins A wins

Visiting team
TEX -0.102∗∗ -0.0904 -0.0732

(-2.59) (-1.45) (-0.90)
Home team
ARI 0.0708 0.0166 -0.0147

(1.40) (0.20) (-0.15)

ATL -0.00857 -0.00949 -0.114
(-0.20) (-0.14) (-1.36)

BAL 0.177∗∗∗ 0.0850 0.00949
(4.50) (1.39) (0.12)

BOS -0.0657 -0.135∗ -0.185∗

(-1.66) (-2.19) (-2.36)

CHA 0.0151 -0.0194 -0.0878
(0.38) (-0.32) (-1.14)

CHN 0.137∗∗ 0.131 0.0432
(3.20) (1.88) (0.50)

CIN 0.0796 0.0259 -0.0243
(1.86) (0.37) (-0.28)

CLE 0.0322 0.0426 -0.0327
(0.81) (0.70) (-0.42)

COL -0.0324 0.0101 -0.0162
(-0.69) (0.14) (-0.18)

DET 0.106∗∗ 0.0877 0.0697
(2.70) (1.43) (0.89)

FLO -0.00185 -0.00278 -0.0818
(-0.04) (-0.04) (-0.91)

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 8 continued

(1) (2) (3) (4) (5) (6)
A wins A wins A wins A wins A wins A wins

Home team
HOU -0.0182 -0.00491 -0.0868

(-0.42) (-0.07) (-1.03)

KCA 0.132∗∗∗ 0.121∗ 0.0475
(3.34) (1.99) (0.60)

LAA 0.0261 0.0224 -0.0246
(0.67) (0.37) (-0.32)

LAN 0.0287 0.00684 -0.0721
(0.67) (0.10) (-0.85)

MIL 0.0936∗ 0.0422 -0.0110
(2.34) (0.68) (-0.14)

MIN -0.0245 0.00912 -0.0218
(-0.62) (0.15) (-0.28)

MON 0.0533 -0.0377 -0.138
(1.24) (-0.54) (-1.56)

NYA -0.0827∗ -0.0874 -0.0937
(-2.08) (-1.42) (-1.21)

NYN 0.0111 -0.0170 -0.0583
(0.26) (-0.25) (-0.67)

OAK -0.0709 -0.105 -0.120
(-1.80) (-1.72) (-1.52)

PHI 0.0712 0.0646 -0.00486
(1.66) (0.95) (-0.06)

PIT 0.0933∗ 0.0452 -0.00391
(2.17) (0.65) (-0.04)

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 8 continued

(1) (2) (3) (4) (5) (6)
A wins A wins A wins A wins A wins A wins

Home team
SDN 0.0766 0.0542 -0.0141

(1.79) (0.79) (-0.16)

SEA 0.0659 0.0225 0.0128
(1.68) (0.36) (0.16)

SFN -0.00226 -0.00766 -0.117
(-0.05) (-0.11) (-1.35)

SLN -0.0142 -0.0342 -0.103
(-0.33) (-0.51) (-1.23)

TBA 0.0480 0.0770 0.159
(0.99) (0.95) (1.46)

TEX -0.00848 -0.00852 -0.0824
(-0.22) (-0.14) (-1.04)

Constant -0.195∗∗∗ -0.161∗∗∗ -0.178∗∗∗ -0.105 -0.152∗∗ -0.0224
(-8.63) (-3.48) (-4.57) (-1.44) (-3.05) (-0.24)

Observations 58812 58812 23200 23200 15166 15166

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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