About

Start your brilliant career with a degree from Australia's #1 ranked university.

News

Find contact details for any general enquiries.

Engage with us

Find contact details for any general enquiries.

Study with us

Our graduates gain the knowledge and skills to lead organisations, develop public policy, create new companies and undertake research.

Our research

Our research is focused on issues that are highly significant for organisations, the Australian economy, and society at large.

Current student resources

Whether you're a new or continuing student, you can find everything you need here about managing your program and the opportunities available to you.

Alumni

Our alumni may be found in the world’s leading companies, policy agencies and universities.

Contact us

Find contact details for any general enquiries.

RSFAS Seminar | Prof Giles Hooker

RSFAS Seminar | Prof Giles Hooker

Ensembles of Trees and CLT's: Inference and Machine Learning

Available to CBE staff and HDRs only.

This talk develops methods of statistical inference based around ensembles of decision trees: bagging, random forests, and boosting. Recent results have shown that when the bootstrap procedure in bagging methods is replaced by sub-sampling, predictions from these methods can be analyzed using the theory of U-statistics which have a limiting normal distribution. Moreover, the limiting variance that can be estimated within the sub-sampling structure.

Using this result, we can compare the predictions made by a model learned with a feature of interest, to those made by a model learned without it and ask whether the differences between these could have arisen by chance. By evaluating the model at a structured set of points we can also ask whether it differs significantly from an additive model. We demonstrate these results in an application to citizen-science data collected by Cornell's Laboratory of Ornithology.

Given time, we will examine recent developments that extend distributional results to boosting-type estimators. Boosting allows trees to be incorporated into more structured regression such as additive or varying coefficient models and often outperforms bagging by reducing bias.

Updated:   4 May 2020 / Responsible Officer:  CBE Communications and Outreach / Page Contact:  College Web Team